
Full-speed Fuzzing: Reducing Fuzzing Overhead
through Coverage-guided Tracing

Stefan Nagy
Virginia Tech

snagy2@vt.edu

Matthew Hicks
Virginia Tech

mdhicks2@vt.edu

Abstract—Coverage-guided fuzzing is one of the most suc-
cessful approaches for discovering software bugs and security
vulnerabilities. Of its three main components: (1) test case
generation, (2) code coverage tracing, and (3) crash triage, code
coverage tracing is a dominant source of overhead. Coverage-
guided fuzzers trace every test case’s code coverage through either
static or dynamic binary instrumentation, or more recently, using
hardware support. Unfortunately, tracing all test cases incurs
significant performance penalties—even when the overwhelming
majority of test cases and their coverage information are dis-
carded because they do not increase code coverage.

To eliminate needless tracing by coverage-guided fuzzers,
we introduce the notion of coverage-guided tracing. Coverage-
guided tracing leverages two observations: (1) only a fraction of
generated test cases increase coverage, and thus require tracing;
and (2) coverage-increasing test cases become less frequent over
time. Coverage-guided tracing encodes the current frontier of
coverage in the target binary so that it self-reports when a
test case produces new coverage—without tracing. This acts
as a filter for tracing; restricting the expense of tracing to
only coverage-increasing test cases. Thus, coverage-guided tracing
trades increased time handling coverage-increasing test cases for
decreased time handling non-coverage-increasing test cases.

To show the potential of coverage-guided tracing, we create an
implementation based on the static binary instrumentor Dyninst
called UnTracer. We evaluate UnTracer using eight real-world
binaries commonly used by the fuzzing community. Experiments
show that after only an hour of fuzzing, UnTracer’s average
overhead is below 1%, and after 24-hours of fuzzing, UnTracer
approaches 0% overhead, while tracing every test case with
popular white- and black-box-binary tracers AFL-Clang, AFL-
QEMU, and AFL-Dyninst incurs overheads of 36%, 612%, and
518%, respectively. We further integrate UnTracer with the state-
of-the-art hybrid fuzzer QSYM and show that in 24-hours of
fuzzing, QSYM-UnTracer executes 79% and 616% more test
cases than QSYM-Clang and QSYM-QEMU, respectively.

Keywords—Fuzzing, software security, code coverage.

I. INTRODUCTION
Software vulnerabilities remain one of the most significant

threats facing computer and information security [1]. Real-
world usage of weaponized software exploits by nation-states
and independent hackers continues to expose the suscepti-
bility of society’s infrastructure to devastating cyber attacks.
For defenders, existing memory corruption and control-flow
safeguards offer incomplete protection. For software develop-
ers, manual code analysis does not scale to large programs.
Fuzzing, an automated software testing technique, is a popular
approach for discovering software vulnerabilities due to its
speed, simplicity, and effectiveness [2], [3], [4], [5].

At a high level, fuzzing consists of (1) generating test
cases, (2) monitoring their effect on the target binary’s ex-
ecution, and (3) triaging bug-exposing and crash-producing

test cases. State-of-the-art fuzzing efforts center on coverage-
guided fuzzing [5], [4], [6], [7], [8], [9], which augments
execution with control-flow tracking apparatuses to trace test
cases’ code coverage (the exact code regions they execute).
Tracing enables coverage-guided fuzzers to focus mutation on
a small set of unique test cases (those that reach previously-
unseen code regions). The goal being complete exploration of
the target binary’s code.

Code coverage is an abstract term that takes on three
concrete forms in fuzzing literature: basic blocks, basic block
edges, and basic block paths. For white-box (source-available)
binaries, code coverage is measured through instrumentation
inserted at compile-time [4], [5], [6]. For black-box (source-
unavailable) binaries, it is generally measured through instru-
mentation inserted dynamically [5], [7] or statically through bi-
nary rewriting [10], or through instrumentation-free hardware-
assisted tracing [11], [12], [4].

Tracing code coverage is costly—the largest source of time
spent for most fuzzers—and the resulting coverage information
is commonly discarded, as most test cases do not increase
coverage. As our results in Section VI show, AFL [5]—one
of the most popular fuzzers—faces tracing overheads as high
as 1300% for black-box binaries and as high as 70% for
white-box binaries. These overheads are significant because,
as experiments in Section III-B show, over 90% of the time
spent fuzzing involves executing and tracing test cases. The
problem with spending all this effort on coverage tracing is that
most test cases and their coverage information are discarded;
because, for most benchmarks in our evaluation, less than 1
in 10,000 of all test cases are coverage-increasing. Thus, the
current practice of blindly tracing the coverage of every test
case is incredibly wasteful.

This paper introduces the idea of coverage-guided tracing,
and its associated implementation UnTracer, targeted at re-
ducing the overheads of coverage-guided fuzzers. Coverage-
guided tracing’s goal is to restrict tracing to test cases guar-
anteed to increase code coverage. It accomplishes this by
transforming the target binary so that it self-reports when a
test case increases coverage. We call such modified binaries
interest oracles. Interest oracles execute at native speeds be-
cause they eliminate the need for coverage tracing. In the
event that the interest oracle reports a test case is coverage-
increasing, the test case is marked as coverage-increasing
and conventional tracing is used to collect code coverage.
Portions of the interest oracle are then unmodified to reflect
the additional coverage and the fuzzing process continues.
By doing this, coverage-guided tracing pays a high cost for
handling coverage-increasing test cases (about 2x the cost of
tracing alone in our experiments), for the ability to run all test

Fuzzer component

Test case generation

Grammar-based

dharma [13]
gramfuzz [14]

Peach [15]

Mutational

Directed

TaintScope [16]

Coverage-guided

AFL [5]
honggfuzz [4]
libFuzzer [6]
VUzzer [7]

Execution monitoring

Black-box

Autodafe [17]
dharma [13]
Peach [15]

White-box

Driller [18]
QSYM [19]
KLEE [20]

Mayhem [21]
S2E [22]

SAGE [23]
TaintScope [16]

Grey-box

AFL [5]
honggfuzz [4]
libFuzzer [6]
VUzzer [7]

TriforceAFL [24]

Fig. 1. A taxonomy of popular fuzzers by test case generation and program analysis approaches.

cases (initially) at native speed. To validate coverage-guided
tracing and explore its tradeoffs on real-world software, we
implement UnTracer. UnTracer leverages the black-box binary
instrumentor Dyninst [25] to construct the interest oracle and
tracing infrastructure.

We evaluate UnTracer alongside several coverage tracers
used with the popular fuzzer AFL [5]. For tracing black-box
binaries, we compare against the dynamic binary rewriter AFL-
QEMU [5], and the static binary rewriter AFL-Dyninst [25].
For tracing white-box binaries, we compare against AFL-
Clang [5]. To capture a variety of target binary and tracer
behaviors, we employ a set of eight real-world programs of
varying class and complexity (e.g., cryptography and image
processing) that are common to the fuzzing community. In
keeping with previous work, we perform evaluations for a 24-
hour period and use 5 test case datasets per benchmark to
expose the effects of randomness. Our results show UnTracer
outperforms blindly tracing all test cases: UnTracer has an
average run time overhead of 0.3% across all benchmarks,
while AFL-QEMU averages 612% overhead, AFL-Dyninst
averages 518% overhead, and AFL-Clang averages 36% over-
head. Experimental results also show that the rate of coverage-
increasing test cases rapidly approaches zero over time and
would need to increase four orders-of-magnitude to ameliorate
the need for UnTracer—even in a white-box tracing scenarios.
We further integrate UnTracer with the state-of-the-art hybrid
fuzzer QSYM [19]. Results show that QSYM-UnTracer aver-
ages 79% and 616% more executed test cases than QSYM-
Clang and QSYM-QEMU, respectively.

In summary, this paper makes the following contributions:

• We introduce coverage-guided tracing: an approach
for reducing fuzzing overhead by restricting tracing
to coverage-increasing test cases.

• We quantify the infrequency of coverage-increasing
test cases across eight real-world applications.

• We show that, for two coverage-guided fuzzers of
different type: AFL (“blind” test case generation) and
Driller (“smart” test case generation), they spend a
majority of their time on tracing test cases.

• We implement and evaluate UnTracer; UnTracer is
our coverage-guided tracer based on the Dyninst
black-box binary instrumentor. We evaluate UnTracer
against three popular, state-of-the-art white- and black-
box binary fuzzing tracing approaches: AFL-Clang
(white-box), AFL-QEMU (black-box, dynamic binary
rewriting), and AFL-Dyninst (black-box, static binary

rewriting), using eight real-world applications.
• We integrate UnTracer with the state-of-the-art hybrid

fuzzer QSYM, and show that QSYM-UnTracer out-
performs QSYM-Clang and QSYM-QEMU.

• We open-source our evaluation benchmarks [26], ex-
perimental infrastructure [27], and an AFL-based im-
plementation of UnTracer [28].

II. BACKGROUND
In this section, we first discuss fuzzers’ defining character-

istics, and how they relate to UnTracer. Second, we provide a
detailed overview of coverage-guided fuzzing and how current
fuzzers measure code coverage. Third, we discuss related
work on the performance of coverage tracing for fuzzing. We
conclude with our guiding research questions and principles.

A. An Overview of Fuzzing
Fuzzing is one of the most efficient and effective techniques

for discovering software bugs and vulnerabilities. Its simplicity
and scalability have led to its widespread adoption among both
bug hunters [5], [4] and the software industry [2], [3]. Funda-
mentally, fuzzers operate by generating enormous amounts of
test cases, monitoring their effect on target binary execution
behavior, and identifying test cases responsible for bugs and
crashes. Fuzzers are often classified by the approaches they use
for test case generation and execution monitoring (Figure 1).

Fuzzers generate test cases using one of two approaches:
grammar-based [29], [13], [14], [15] or mutational [30], [5],
[4], [7], [6]. Grammar-based generation creates test cases
constrained by some pre-defined input grammar for the target
binary. Mutational generation creates test cases using other test
cases; in the first iteration, by mutating some valid “seed” input
accepted by the target binary; and in subsequent iterations,
by mutating prior iterations’ test cases. For large applications,
input grammar complexity can be burdensome, and for pro-
prietary applications, input grammars are seldom available.
For these reasons, most popular fuzzers are mutational. Thus,
coverage-guided tracing focuses on mutational fuzzing.

Most mutational fuzzers leverage program analysis to
strategize which test cases to mutate. Directed fuzzers [31],
[32] aim to reach specific locations in the target binary; thus
they prioritize mutating test cases that seem to make progress
toward those locations. Coverage-guided fuzzers [5], [4], [7],
[6] aim to explore the entirety of the target binary’s code; thus
they favor mutating test cases that reach new code regions.
As applications of directed fuzzing are generally niche, such
as taint tracking [16] or patch testing [31], coverage-guided

seed inputs input queue

target binary

Crash
Triage

21

3

crashing

5

discarded

Test Case
Generation

coverage-increasing

test cases
Execution
Monitoring

(trace coverage)

4

 test cases
(N)

 test cases
(<< N)

 test cases
(~ N)

Fig. 2. High-level architecture of a coverage-guided mutational fuzzer.

fuzzing’s wider scope makes it more popular among the
fuzzing community [5], [6], [4], [3]. Coverage-guided tracing
is designed to enhance coverage-guided fuzzers.

Fuzzers are further differentiated based on the degree
of program analysis they employ. Black-box fuzzers [17],
[13], [15] only monitor input/output execution behavior (e.g.,
crashes). White-box fuzzers [33], [23], [21], [18], [16], [20],
[22] use heavy-weight program analysis for fine-grained ex-
ecution path monitoring and constraint solving. Grey-box
fuzzers [5], [4], [7], [6], [24], [31], [8] are a tradeoff between
both—utilizing lightweight program analysis (e.g., code cov-
erage tracing). Coverage-guided grey-box fuzzers are widely
used in practice today; examples include VUzzer [7], Google’s
libFuzzer [6], honggfuzz [4], and AFL [5]. Our implementa-
tion of coverage-guided tracing (UnTracer) is built atop the
coverage-guided grey-box fuzzer AFL [5].

B. Coverage-Guided Fuzzing
Coverage guided fuzzing aims to explore the entirety of the

target binary’s code by maximizing generated test cases’ code
coverage. Figure 2 highlights the high-level architecture of a
coverage-guided mutational fuzzer. Given a target binary and
some initial set of input seeds, S, fuzzing works as follows:

1) Queue all initial seeds1 s ∈ S for mutation.
2) test case generation: Select a queued seed and

mutate it many times, producing test case set T .
3) Execution monitoring: For all test cases t ∈ T , trace

their code coverage and look for crashes.
4) If a test case is coverage-increasing, queue it as a

seed, and prioritize it for the next round of mutation.
Otherwise, discard it.

5) Crash triage: Report any crashing test cases.
6) Return to step 2 and repeat.
Coverage-guided fuzzers trace code coverage during execu-

tion via binary instrumentation [5], [6], [4], system emulation
[5], [11], [24], or hardware-assisted mechanisms [11], [4],
[12]. All coverage-guided fuzzers are based on one of three
metrics of code coverage: basic blocks, basic block edges, or
basic block paths. Basic blocks (Figure 3) refer to straight-
lined sequences of code terminating in a control-flow transfer
instruction (e.g., jumps or returns); they form the nodes of a
program’s control-flow graph.

A basic block edge represents the actual control-flow
transfer. It is possible to represent edge coverage as a set
of (src , dest) tuples, where src and dest are basic
blocks. Representing edge coverage this way (i.e., solely of
basic blocks) allows edge coverage to be inferred from block
coverage. The caveat is that this requires prior elimination of
all critical edges, i.e., edges whose starting/ending basic blocks

1Seeds refers to test cases used as the basis for mutation. In the first iteration,
the seeds are generally several small inputs accepted by the target binary.

IF (x==1)
 foo();

IF (y==2)
 bar();

return;
IF(y==2)

foo();x≠1

bar();

Source
Code

Basic
Blocks

y=2

y≠2

return;

x=1

IF(x==1)

Fig. 3. An example of basic blocks in C code.

have multiple outgoing/incoming edges, respectively (details in
Section VIII-B). honggFuzz [4], libFuzzer [6], and AFL [5] are
fuzzers that track coverage at edge granularity. honggFuzz and
libFuzzer track edge coverage indirectly using block coverage,
while AFL tracks edge coverage directly (although it stores the
information approximately in a 64KB hash table [34]).

To date, no fuzzers that we are aware of track coverage at
path granularity, however, we can imagine future approaches
leveraging Intel Processor Trace’s [35] ability to make tracking
path coverage tractable. Thus, coverage-guided tracing com-
plements coverage-guided fuzzers that trace block or edge
coverage at block granularity.

C. Coverage Tracing Performance
Coverage-guided fuzzing of white-box (source-

available) binaries typically uses instrumentation inserted
at compile/assembly-time [5], [6], [4], allowing for fast
identification and modification of basic blocks from source.
AFL accomplishes this through custom GCC and Clang
wrappers. honggfuzz and libFuzzer also provide their own
Clang wrappers. Fuzzing black-box (source-unavailable)
binaries is far more challenging, as having no access to
source code requires costly reconstruction of binary control-
flow. VUzzer [7] uses PIN [36] to dynamically (during
run-time) instrument black-box binaries. AFL’s QEMU
user-mode emulation also instruments dynamically, but as
our experiments show (Section VI), it incurs overheads as
high as 1000% compared to native execution. To address
the weakness of dynamic rewriting having to translate basic
blocks in real-time—potentially multiple times—Cisco-Talos
provides a static binary rewriter AFL-Dyninst [10]. While
previous work shows AFL-Dyninst significantly outperforms
AFL-QEMU on select binaries [37], results in Section VI
suggest that the performance gap is much narrower.

D. Focus of this Paper
A characteristic of coverage-guided fuzzing is the coverage

tracing of all generated test cases. Though “smarter” fuzzing
efforts generate coverage-increasing test cases with higher fre-
quency, results in Section III show that only a small percentage
of all test cases are coverage-increasing. We draw inspiration
from Amdahl’s Law [38], realizing that the common case—
the tracing of non-coverage-increasing test cases—presents
an opportunity to substantially improve the performance of
coverage-guided fuzzing. Thus we present coverage-guided
tracing, which restricts tracing to only coverage-increasing test

bsdtar cert-basic cjson djpeg pdftohtml readelf sfconvert tcpdump avg.
AFL-Clang 89.4 91.9 86.0 94.7 98.4 86.9 99.2 88.3 91.8
AFL-QEMU 95.7 98.9 95.7 97.8 99.5 96.5 98.6 95.8 97.3

CADET_1 CADET_3 CROMU_1 CROMU_2 CROMU_3 CROMU_4 CROMU_5 CROMU_6 avg.
Driller-AFL 97.6 97.1 96.0 94.9 96.0 93.1 97.5 94.9 95.9

TABLE I. PER-BENCHMARK PERCENTAGES OF TOTAL FUZZING RUNTIME SPENT ON TEST CASE EXECUTION AND COVERAGE TRACING BY AFL-CLANG
AND AFL-QEMU (“BLIND” FUZZING), AND DRILLER-AFL (“SMART” FUZZING). WE RUN EACH FUZZER FOR ONE HOUR PER BENCHMARK.

bsdtar cert-basic cjson djpeg pdftohtml readelf sfconvert tcpdump avg.
AFL-Clang 1.63E−5 4.47E−5 2.78E−6 4.30E−5 1.42E−4 7.43E−5 8.77E−5 8.55E−5 6.20E−5
AFL-QEMU 3.34E−5 4.20E−4 1.41E−5 1.09E−4 6.74E−4 2.28E−4 4.25E−4 1.55E−4 2.57E−4

CADET_1 CADET_3 CROMU_1 CROMU_2 CROMU_3 CROMU_4 CROMU_5 CROMU_6 avg.
Driller-AFL 2.70E−5 4.00E−4 2.06E−5 2.67E−5 2.33E−5 8.65E−7 1.61E−5 8.45E−6 6.53E−5

TABLE II. PER-BENCHMARK RATES OF COVERAGE-INCREASING TEST CASES OUT OF ALL TEST CASES GENERATED IN ONE HOUR BY AFL-CLANG
AND AFL-QEMU (“BLIND” FUZZING), AND DRILLER-AFL (“SMART” FUZZING).

cases. Our implementation, UnTracer, is a coverage-guided
tracing framework for coverage-guided fuzzers.

III. IMPACT OF DISCARDED TEST CASES
Traditional coverage-guided fuzzers (e.g., AFL [5], lib-

Fuzzer [6], and honggfuzz [4]) rely on “blind” (random
mutation-based) test case generation; coverage-increasing test
cases are preserved and prioritized for future mutation, while
the overwhelming majority are non-coverage-increasing and
discarded along with their coverage information. To reduce
rates of non-coverage-increasing test cases, several white-box
and grey-box fuzzers employ “smart” test case generation.
Smart mutation leverages source analysis (e.g., symbolic ex-
ecution [18], program state [9], and taint tracking [39], [7])
to generate a higher proportion of coverage-increasing test
cases. However, it is unclear if such fuzzers spend signifi-
cantly more time on test case generation than on test case
execution/coverage tracing or how effective smart mutation is
at increasing the rate of coverage-increasing test cases.

In this section, we investigate the performance impact of
executing/tracing non-coverage-increasing test cases in two
popular state-of-the-art fuzzers—AFL (blind test case gen-
eration) [5] and Driller (smart test case generation) [18].
We measure the runtime spent by both AFL and Driller on
executing/tracing test cases across eight binaries, for one hour
each, and their corresponding rates of coverage-increasing test
cases. Below, we highlight the most relevant implementation
details of both fuzzers regarding test case generation and
coverage tracing, and our experimental setup.

AFL: AFL [5] is a “blind” fuzzer as it relies on random
mutation to produce coverage-increasing (coverage-increasing)
test cases, which are then used during mutation.2 AFL traces
test case coverage using either QEMU-based dynamic instru-
mentation for black-box binaries or assembly/compile-time
instrumentation for white-box binaries. We cover both options
by evaluating AFL-QEMU and AFL-Clang.

Driller: Driller [18] achieves “smart” test case genera-
tion by augmenting blind mutation with selective concolic
execution—solving path constraints symbolically (instead of
by brute-force). Intuitively, Driller aims to outperform blind
fuzzers by producing fewer non-coverage-increasing test cases;

2A second, less-relevant factor influencing AFL’s test case mutation priority
is test case size. For two test cases exhibiting identical code coverage, AFL
will prioritize the test case with smaller filesize [5].

its concolic execution enables penetration of path constraints
where blind fuzzers normally stall. We evaluate Driller-AFL
(aka ShellPhuzz [40]). Like AFL, Driller-AFL also utilizes
QEMU for black-box binary coverage tracing.

A. Experimental Setup
For AFL-Clang and AFL-QEMU we use the eight bench-

marks from our evaluation in Section VI. As Driller currently
only supports benchmarks from the DARPA Cyber Grand
Challenge (CGC) [41], we evaluate Driller-AFL on eight pre-
compiled [42] CGC binaries. We run all experiments on the
same setup as our performance evaluation (Section VI).

To measure each fuzzer’s execution/tracing time, we in-
sert timing code in AFL’s test case execution function
(run_target()). As timing occurs per-execution, this al-
lows us to also log the total number of test cases generated.
We count each fuzzer’s coverage-increasing test cases by
examining its AFL queue directory and counting all saved test
cases AFL appends with tag +cov—its indicator that the test
case increases code coverage.

B. Results
As shown in Table I, both AFL and Driller spend the

majority of their runtimes on test case execution/coverage
tracing across all benchmarks: AFL-Clang and AFL-QEMU
average 91.8% and 97.3% of each hour, respectively, while
Driller-AFL averages 95.9% of each hour. Table II shows each
fuzzer’s rate of coverage-increasing test cases across all one-
hour trials. On average, AFL-Clang and AFL-QEMU have
.0062% and .0257% coverage-increasing test cases out of all
test cases generated in one hour, respectively. Driller-AFL
averages .00653% coverage-increasing test cases out of all test
cases in each one hour trial. These results show that coverage-
guided fuzzers AFL (blind) and Driller (smart)—despite adopt-
ing different test case generation methodologies—both spend
the majority of their time executing and tracing the coverage
of non-coverage-increasing test cases.

IV. COVERAGE-GUIDED TRACING
Current coverage-guided fuzzers trace all generated test

cases to compare their individual code coverage to some
accumulated global coverage. Test cases with new coverage are
retained for mutation and test cases without new coverage are
discarded along with their coverage information. In Section III,

seed inputs input queue

interest oracle

 Test Case
Generation

test cases

Execution
Monitoring

(trace coverage)

Crash
Triage

1

crashing
test cases

target binary

new
coverage

Unmodify
Oracle Determine

Interesting
(with oracle)

2

updated

oracle

3

discarded
test cases

(N)

(~ N)

coverage-
increasing

test cases
(<< N)

Fig. 4. Visualization of how coverage-guided tracing augments the workflow of a conventional coverage-guided grey-box fuzzer (e.g., AFL [5]). Coverage-guided
tracing can also be similarly adapted into coverage-guided white-box fuzzers (e.g., Driller [18]).

we show that two coverage-guided fuzzers of different type—
AFL (“blind”) and Driller (“smart”)—both spend the majority
of their time executing/tracing non-coverage-increasing test
cases. Coverage-guided tracing aims to trace fewer test cases
by restricting tracing to only coverage-increasing test cases.

A. Overview
Coverage-guided tracing introduces an intermediate step

between test case generation and code coverage tracing: the
interest oracle. An interest oracle is a modified version of the
target binary, where a pre-selected software interrupt is inserted
via overwriting at the start of each uncovered basic block.
Interest oracles restrict tracing to only coverage-increasing test
cases as follows: test cases that trigger the oracle’s interrupt
are marked coverage-increasing, and then traced. As new
basic blocks are recorded, their corresponding interrupts are
removed from the oracle binary (unmodifying)—making it
increasingly mirror the original target. As this process repeats,
only test cases exercising new coverage trigger the interrupt—
thus signaling them as coverage-increasing.

As shown in Figure 4, coverage-guided tracing augments
conventional coverage-guided fuzzing by doing the following:

1) Determine Interesting: Execute a generated test case
against the interest oracle. If the test case triggers the
interrupt, mark it as coverage-increasing. Otherwise,
return to step 1.

2) Full Tracing: For every coverage-increasing test
case, trace its full code coverage.

3) Unmodify Oracle: For every newly-visited basic
block in the test case’s coverage, remove its corre-
sponding interrupt from the interest oracle.

4) Return to step 1.

B. The Interest Oracle
In coverage-guided tracing, interest oracles sit between test

case generation and coverage tracing—acting as a mechanism
for filtering-out non-coverage-increasing test cases from being
traced. Given a target binary, an interest oracle represents a
modified binary copy with a software interrupt signal over-
writing the start of each basic block. A test case is marked
coverage-increasing if it triggers the interrupt—meaning it
has entered some previously-uncovered basic block. Coverage-
increasing test cases are then traced for their full coverage,
and their newly-covered basic blocks are unmodified (interrupt
removed) in the interest oracle.

Interest oracle construction requires prior identification of
the target binary’s basic block addresses. Several approaches

for this exist in literature [43], [44], [45], and tools like
angr [46] and Dyninst [25] can also accomplish this via static
analysis. Inserting interrupts is trivial, but bears two caveats:
first, while any interrupt signal can be used, it should avoid
conflicts with other signals central to fuzzing (e.g., those
related to crashes or bugs); second, interrupt instruction size
must not exceed any candidate basic block’s size (e.g., one-
byte blocks cannot accommodate two-byte interrupts).

C. Tracing
Coverage-guided tracing derives coverage-increasing test

cases’ full coverage through a separate, tracing-only version of
the target. As interest oracles rely on block-level binary mod-
ifications, code coverage tracing must also operate at block-
level. Currently, block-level tracing can support either block
coverage [7], or—if all critical edges are mitigated—edge
coverage [4], [6]. Thus, coverage-guided tracing is compatible
with most existing tracing approaches.

D. Unmodifying
Coverage-guided tracing’s unmodify routine removes ora-

cle interrupts in newly-covered basic blocks. Given a target
binary, an interest oracle, and a list of newly-covered basic
blocks, unmodifying overwrites each block’s interrupt with the
instructions from the original target binary.

E. Theoretical Performance Impact
Over time, a growing number of coverage-increasing test

cases causes more of the oracle’s basic blocks to be unmodified
(Figure 5)—thus reducing the dissimilarity between oracle
and target binaries. As the oracle more closely resembles the
target, it becomes less likely that a test case will be coverage-
increasing (and subsequently traced). Given that non-coverage-
increasing test cases execute at the same speed for both the
original and the oracle binaries, as fuzzing continues, coverage-
guided tracing’s overall performance approaches 0% overhead.

V. IMPLEMENTATION: UNTRACER
Here we introduce UnTracer, our implementation of

coverage-guided tracing. Below, we offer an overview of
UnTracer’s algorithm and discuss its core components in detail.

A. UnTracer Overview
UnTracer is built atop a modified version of the coverage-

guided grey-box fuzzer, AFL 2.52b [5], which we selected
due to both its popularity in the fuzzing literature [47], [18],
[48], [8], [31], [24], [9], [49] and its open-source availability.
Our implementation consists of 1200 lines of C and C++

IF (x==3)
 foo();

IF (y==14)
 bar();

IF (z==58)
 bug();

IF(y==14)

foo();

bar();

IF(z==58)

bug();

INT;

INT;

INT;

IF(y==14)

foo();

bar();

IF(z==58)

bug();

Source
Code

Starting
Oracle

Oracle after
round 1

IF(y==14)

foo();

bar();

IF(z==58)

bug();

INT;

INT;

INT;

INT;

INT;

Oracle after
round 100

Round
 Test case
 values

01
x=3
y=0
z=0

02
x=3
y=14
z=0

03
x=3
y=14
z=58

100
x=3
y=14
z=58

IF(x==3)IF(x==3)
INT;

IF(x==3)

Fig. 5. An example of the expected evolution of a coverage-guided tracing
interest oracle’s basic blocks alongside its original source code. Here, INT
denotes an oracle interrupt. For simplicity, this diagram depicts interrupts as
inserted; however, in coverage-guided tracing, the interrupts instead overwrite
the start of each basic block. Unmodifying basic blocks consists of resetting
their interrupt-overwritten byte(s) to their original values.

code. UnTracer instruments two separate versions of the target
binary—an interest oracle for identifying coverage-increasing
test cases, and a tracer for identifying new coverage. As AFL
utilizes a forkserver execution model [50], we incorporate this
in both UnTracer’s oracle and tracer binaries.

Algorithm 1 shows the steps UnTracer takes, as integrated
with AFL. After AFL completes its initial setup routines
(e.g., creating working directories and file descriptors) (line
1), UnTracer instruments both the oracle and tracer binaries
(lines 2–3); the oracle binary gets a forkserver while the tracer
binary gets a forkserver and basic block-level instrumentation
for coverage tracing. As the oracle relies on block-level soft-
ware interrupts for identifying coverage-increasing test cases,
UnTracer first identifies all basic blocks using static analysis
(line 5); then, UnTracer inserts the interrupt at the start of every
basic block in the oracle binary (lines 6–8). To initialize both
the oracle and tracer binaries for fuzzing, UnTracer starts their
respective forkservers (lines 9–10). During AFL’s main fuzzing
loop (lines 11–23), UnTracer executes every AFL-generated
test case (line 12) on the oracle binary (line 13). If any test case
triggers an interrupt, UnTracer marks it as coverage-increasing
(line 14) and uses the tracer binary to collect its coverage
(line 15). We then stop the forkserver (line 16) to unmod-
ify every newly-covered basic block (lines 17-19)—removing
their corresponding oracle interrupts; this ensures only future
test cases with new coverage will be correctly identified as
coverage-increasing. After all newly-covered blocks have been
unmodified, we restart the updated oracle’s forkserver (line
20). Finally, AFL completes its coverage-increasing test case
handling routines (e.g., queueing and prioritizing for mutation)
(line 21) and fuzzing moves onto the next test case (line 12).
Figure 6 depicts UnTracer’s architecture.

B. Forkserver Instrumentation
During fuzzing, both UnTracer’s oracle and tracer binaries

are executed many times; the oracle executes all test cases
to determine which are coverage-increasing and the tracer
executes all coverage-increasing test cases to identify new

Algorithm 1: The UnTracer algorithm integrated in AFL.
Input: P : the target program
Data: b: a basic block

B: a set of basic blocks
i: an AFL-generated test case
Φ: the set of all coverage-increasing test cases

1 AFL SETUP()
// Instrument oracle and tracer binaries

2 PO ← INSTORACLE(P)
3 PT ← INSTTRACER(P)
// Find and modify all of oracle’s blocks

4 B = ∅
5 B ← GETBASICBLOCKS(P)
6 for b ∈ B do
7 MODIFYORACLE(b)
8 end
// Start oracle and tracer forkservers

9 STARTFORKSERVER(PO)
10 STARTFORKSERVER(PT)

// Main fuzzing loop
11 while 1 do
12 i← AFL WRITETOTEST CASE()
13 if PO(i)→ INTERRUPT then

// The test case is coverage-increasing
14 Φ.ADD(i)

// Trace test case’s new coverage
15 Btrace ← GETTRACE(PT (i))

// Kill oracle before unmodifying
16 STOPFORKSERVER(PO)

// Unmodify test case’s new coverage
17 for b ∈ Btrace do
18 UNMODIFYORACLE(b)
19 end

// Restart oracle before continuing
20 STARTFORKSERVER(PO)
21 AFL HANDLECOVERAGEINCREASING()
22 end
23 end

coverage. In implementing UnTracer, we aim to optimize
execution speeds of both binaries. Like other AFL tracers,
UnTracer incorporates a forkserver execution model [50] in its
tracer binary, as well as in its oracle binary. By launching new
processes via fork(), the forkserver avoids repetitive process
initialization—achieving significantly faster speeds than tradi-
tional execve()-based execution. Typically, instrumentation
first inserts a forkserver function in a binary’s .text region,
and then links to it a callback in the first basic block of function
<main>. In the tracer binary, we already use Dyninst’s static
binary rewriting for black-box binary instrumentation, so we
use that same technique for the forkserver.

For the oracle binary, our initial approach was to instru-
ment it using Dyninst. Unfortunately, preliminary evaluations
revealed several performance problems.3 Since the oracle
executes every test case, it is performance critical. To avoid
Dyninst’s limitations, we leverage AFL’s assembly-time instru-
mentation to insert the forkserver in the oracle binary, since it
closely mimics the outcome of black-box binary rewriters.

C. Interest Oracle Binary
The oracle is a modified version of the target binary that

adds the ability to self-report coverage-increasing test cases
through the insertion of software interrupts at the start of

3We made Dyninst developers aware of several performance issues—
specifically, excessive function calls (e.g., to __dl_relocate_object)
after exiting the forkserver function. While they confirmed that this behavior
is unexpected, they were unable to remedy these issues before publication.

target binary

 test cases

Instrument Tracer

Instrument
Oracle

Get Blocks

oracle

Modify
Oracle

tracer

Determine
Interesting
(with oracle)

basic
blocks

forkserver
oracle

coverage-
increasing
test cases

Trace Coverage
(with tracer)

new
coverage

updated

oracle

Unmodify
Oracle

Fig. 6. UnTracer’s workflow. Not shown is test case generation, or starting/stopping forkservers.

each uncovered basic block. Thus, if a test case triggers the
interrupt, it has exercised some new basic block and is marked
as coverage-increasing. Oracle binary construction requires
prior knowledge of the target binary’s basic block addresses.
We leverage Dyninst’s static control-flow analysis to output
a list of basic blocks, then iterate through that list in using
binary file IO to insert the interrupts. To prevent interrupts
triggering before forkserver initialization, we do not consider
functions executed prior to the forkserver callback in <main>
(e.g., <_start>, <_libc_start_main>, <_init>,
<frame_dummy>).

We use SIGTRAP for our interrupt for two reasons: (1)
it has long been used for fine-grain execution control and
analysis (e.g., gdb [51], [52] and kernel-probing [53], [54]);
and (2) its binary representation—0xCC—is one byte long,
making it possible to overwrite basic blocks of all sizes.

D. Tracer Binary
If the oracle determines a test case to be coverage-

increasing, UnTracer extracts its new code coverage by ex-
ecuting it on a separate tracer binary—a coverage tracing-
instrumented version of the target binary. We utilize Dyninst
to statically instrument the tracer with a forkserver for fast
execution, and coverage callbacks inserted in each of its basic
blocks for coverage tracing. Upon execution, a basic block’s
callback appends its corresponding basic block address to a
trace file located in UnTracer’s working directory.

In an early version of UnTracer, we observed that coverage
traces containing repeatedly-executing basic blocks add signif-
icant overhead in two ways: first, recording individual blocks
multiple times—a common occurrence for binaries exhibiting
looping behavior—slowed UnTracer’s trace writing operations;
second, trace reading is also penalized, as subsequent block-
level unmodification operations are forced to process any
repeatedly-executing basic blocks. To mitigate such overhead,
we optimize tracing to only record uniquely-covered basic
blocks as follows: in the tracer forkserver, we initialize a
global hashmap data structure to track all covered basic blocks
unique to each trace; as each tracing child is forked, it
inherits the initial hashmap; upon a basic block’s execution,
its callback utilizes hashmap lookup to determine if the block
has been previously covered in the current execution; if not, the
callback updates the current trace log and updates the hashmap.
With this optimization, for each coverage-increasing test case,
UnTracer records a set of all uniquely-covered basic blocks,

thus reducing the overhead resulting from logging, reading,
and processing the same basic block multiple times.

E. Unmodifying the Oracle
When a test case triggers the oracle’s software interrupt,

it is marked as coverage-increasing and UnTracer removes its
interrupts from its newly-covered basic blocks to ensure no
future test case with the non-new coverage is marked coverage-
increasing. For each newly-covered basic block reported in an
coverage-increasing test case’s trace log, UnTracer replaces
the inserted interrupt with the original byte found in the target
binary—effectively resetting it to its pre-modified state. Doing
so means any future test cases executing this basic block
will no longer trigger the interrupt and subsequently not be
misidentified as coverage-increasing.

We observe that even coverage-increasing test cases often
have significant overlaps in coverage. This causes UnTracer to
attempt unmodifying many already-unmodified basic blocks,
resulting in high overhead. To mitigate this, we introduce a
hashmap data structure for tracking global coverage. Much
like the hashmap used for per-trace redundant basic block
filtering, before unmodifying any basic block from the trace
log, UnTracer determines if the block has been seen in any
previous trace via hashmap lookup. If so, the basic block is
skipped. If not, its interrupt is removed, and the basic block is
added to the hashmap. Thus, global coverage tracking ensures
that only newly-covered basic blocks are processed.

VI. TRACING-ONLY EVALUATION
Our evaluation compares UnTracer against tracing all

test cases with three widely used white- and black-box bi-
nary fuzzing tracing approaches—AFL-Clang (white-box) [5],
AFL-QEMU (black-box dynamically-instrumented) [5], and
AFL-Dyninst (black-box statically-instrumented) [10] on eight
real-world benchmarks of different type.

Our experiments answer the following questions:
1) How does UnTracer (coverage-guided tracing) per-

form compared to tracing all test cases?
2) What factors contribute to UnTracer’s overhead?
3) How is UnTracer’s overhead impacted by the rate of

coverage-increasing test cases?

A. Evaluation Overview
We compare UnTracer’s performance versus popular white-

and black-box fuzzing tracing approaches: AFL-Clang, AFL-
QEMU, and AFL-Dyninst. These tracers all work with the

Package Benchmark Version Class Basic Blocks Test Cases (·106) Coverage-
increasing

Ratio

500ms
Timeouts

libarchive bsdtar 3.3.2 archiv 31379 21.06 1.47E−5 0
libksba cert-basic 1.3.5 crypto 9958 10.73 1.50E−5 0
cjson cjson 1.7.7 web 1447 25.62 1.48E−5 0
libjpeg djpeg 9c image 4844 14.53 1.33E−5 12133
poppler pdftohtml 0.22.5 doc 54596 1.21 7.85E−5 0
binutils readelf 2.30 dev 21249 14.89 8.98E−5 0
audiofile sfconvert 0.2.7 audio 5603 10.17 3.91E−2 1137609
tcpdump tcpdump 4.9.2 net 33743 27.14 3.73E−5 0

TABLE III. INFORMATION ON THE EIGHT BENCHMARKS USED IN OUR EVALUATION IN SECTIONS VI AND VII AND AVERAGES OVER 5 24-HOUR
DATASETS FOR EACH BENCHMARK.

same fuzzer, AFL, and they cover the tracing design space
including working with white- and black-box binaries as
well as static and dynamic binary rewriting. Our evaluations
examine each tracer’s overhead on eight real-world, open-
source benchmarks of different type, common to the fuzzing
community. Table III provides benchmark details. To smooth
the effects of randomness and ensure the most fair comparison
of performance, we evaluate tracers on the same five input
datasets per benchmark. Each dataset contains the test cases
generated by fuzzing that benchmark with AFL-QEMU for 24
hours. Though our results show UnTracer has less than 1%
overhead after one hour of fuzzing, we extend all evaluations
to 24 hours to better match previous fuzzing evaluations.

We configure AFL to run with 500ms timeouts and leave
all other parameters at their defaults. We modify AFL so that
all non-tracing functionality is removed (e.g., progress reports)
and instrument its run_target() function to collect per-
test case timing. To address noise from the operating system
and other sources, we perform eight trials of each dataset.
For each set of trials per dataset, we apply trimmed-mean de-
noising [55] on each test case’s tracing times; the resulting
times represent each test case’s median tracing performance.

All trials are distributed across two workstations—each
with five single-core virtual machines. Both host systems run
Ubuntu 16.04 x86 64 operating systems, with six-core Intel
Core i7-7800X CPU @ 3.50GHz, and 64GB RAM. All 10
virtual machines run Ubuntu x86 64 18.04 using VirtualBox.
We allocate each virtual machine 6GB of RAM.4

B. Experiment Infrastructure
To narrow our focus to tracing overhead, we only record

time spent executing/tracing test cases. To maintain fairness,
we run all tracers on the same five pre-generated test case
datasets for each benchmark. For dataset generation, we imple-
ment a modified version of AFL that dumps its generated test
cases to file. In our evaluations, we use QEMU as the baseline
tracer (since our focus is black-box tracing) to generate the
five datasets for each benchmark.

Our second binary—TestTrace—forms the backbone
of our evaluation infrastructure. We implement this using a
modified version of AFL—eliminating components irrelevant
to tracing (e.g., test case generation and execution monitoring).
Given a benchmark, pre-generated dataset, and tracing mode
(i.e., AFL-Clang, AFL-QEMU, AFL-Dyninst, or none (a.k.a.
baseline)), TestTrace: (1) reproduces the dataset’s test cases
one-by-one, (2) measures time spent tracing each test case’s

4Across all trials, we saw no benchmarks exceeding 2GB of RAM usage.

coverage, and (3) logs each trace time to file. For UnTracer,
we include both the initial full-speed execution and any time
spent handling coverage-increasing test cases.

C. Benchmarks
Our benchmark selection is based on popularity in the

fuzzing community and benchmark type. We first identify
candidate benchmarks from several popular fuzzers’ trophy
cases5 and public benchmark repositories [5], [56], [4], [3],
[57]. To maximize benchmark variety, we further partition can-
didates by their overall type—software development, image
processing, data archiving, network utilities, audio process-
ing, document processing, cryptography, and web develop-
ment. After we filter out several candidate benchmarks based
on incompatibility with our tracers (e.g., Dyninst-based instru-
mentation crashes on openssl), we select one benchmark per
category: bsdtar (archiv), cert-basic (crypto), cjson
(web), djpeg (image), pdftohtml (doc), readelf (dev),
sfconvert (audio), and tcpdump (net).

For each benchmark, we measure several other metrics
with potential effects on tracing overhead: number of basic
blocks; and average number of generated test cases, average
rate of coverage-increasing test cases, and average number of
500ms timeouts in 24 hours. Benchmark basic block totals
are computed by enumerating all basic blocks statically using
Dyninst [25]. For counting timeouts, we examined the statistics
reported by afl-fuzz-saveinputs during dataset gen-
eration; using our specified timeout value (500ms), we then
averaged the number of timeouts per benchmark among its
datasets. Lastly, for each benchmark, we counted and averaged
the number of test cases generated in all of its 24-hour datasets.

We compile each benchmark using Clang/LLVM, with all
compiler options set to their respective benchmark-specific
defaults. Below, we detail our additional tracer-specific bench-
mark configurations.

1) Baseline: AFL’s forkserver-based execution model (also
used by UnTracer’s interest oracle and tracer binaries) adds a
substantial performance improvement over execve()-based
execution [50]. As each fuzzing tracer in our evaluation
leverages forkserver-based execution, we design our “ground-
truth” benchmark execution models to represent the fastest
known execution speeds: a statically-instrumented forkserver
without any coverage tracing. We use a modified copy of
AFL’s assembler (afl-as) to instrument baseline (forkserver-
only) benchmark versions. In each benchmark trial, we use

5A fuzzer’s “trophy case” refers to a collection of bugs/vulnerabilities
reportedly discovered with that fuzzer.

bs
dt

ar

ce
rt-

ba
sic

cjs
on

djp
eg

pd
fto

ht
m

l

re
ad

elf

sfc
on

ve
rt

tcp
du

m
p

av
g.

Benchmark

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
el

at
iv

e
E

xe
cu

tio
n

 T
im

e
AFL-QEMU AFL-Dyninst UnTracer

Fig. 7. Per-benchmark relative overheads of UnTracer versus black-box
binary tracers AFL-QEMU and AFL-Dyninst.

its baseline execution speeds as the basis for comparing each
fuzzing tracers’ overhead.

2) AFL-Clang: As compiling with AFL-GCC failed for
some binaries due to changes in GCC, we instead use AFL-
Clang.

3) AFL-QEMU: We only need to provide it the original
uninstrumented target binary of each benchmark in our evalu-
ation.

4) AFL-Dyninst: For our AFL-Dyninst evaluations, we
instrument each binary using AFL-Dyninst’s instrumenter with
configuration parameters bpatch.setDelayedParsing
set to true; bpatch.setLivenessAnalysis and
bpatch.setMergeTramp false; and leave all other
configuration parameters at their default settings.

D. Timeouts
Coverage tracing is affected by pre-defined execution time-

out values. Timeouts act as a “hard limit”—terminating a
test case’s tracing if its duration exceeds the timeout’s value.
Though timeouts are necessary for halting infinitely-looping
test cases, small timeouts prematurely terminate tracing. For
long-running test cases, this results in missed coverage in-
formation. In cases where missed coverage causes coverage-
increasing test cases to be misidentified as non-coverage-
increasing, this will have cascading effects on test case gener-
ation. As coverage-guided fuzzers explore the target binary by
mutating coverage-increasing test cases, exclusion of timed-
out—but otherwise coverage-increasing—test cases results in
a higher likelihood of generated test cases being non-coverage-
increasing, and thus, slowing coverage indefinitely.

Small timeouts, when hit frequently, distort tracers’ over-
heads, making their performance appear closer to each others’.
In early experiments with timeouts of 100ms (AFL’s default),
we observed that, for some datasets, our worst-performing
tracers (e.g., AFL-Dyninst, AFL-QEMU) had similar perfor-
mance to otherwise faster white-box-based tracing (i.e., AFL-
Clang). Upon investigating each tracer’s logs, we found that all
were timing-out on a significant percentage of the test cases.
This was striking given that the baseline (forkserver-only)
benchmark versions had significantly fewer timeouts. Thus,
a 100ms timeout was too restrictive. We explored the effect of
several different timeout values, with the goal of making each

bs
dta

r

ce
rt-

ba
sic

cjs
on

djp
eg

pd
fto

htm
l

rea
de

lf

sfc
on

ve
rt

tcp
du

mp
av

g.

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
el

at
iv

e
E

xe
cu

tio
n

Ti
m

e

AFL-Clang UnTracer

Fig. 8. Per-benchmark relative overheads of UnTracer versus white-box
binary tracer AFL-Clang.

tracer’s number of timeouts close to the baseline’s (assumed
ground truth).

E. UnTracer versus Coverage-agnostic Tracing
We examine our evaluation results to identify each fuzzing

tracer’s overhead per benchmark. For each tracer’s set of trials
per benchmark dataset, we employ trimmed-mean de-noising
(shown to better reveal median tendency [55]) at test case
level—removing the top and bottom 33% outliers—to reduce
impact of system interference on execution speeds. We then
take the resulting five trimmed-mean dataset overheads for
each tracer-benchmark combination and average them to obtain
tracer-benchmark overheads. Lastly, we convert all averaged
tracer-benchmark overheads to relative execution times with
respect to baseline (e.g., a relative execution time of 1.5
equates to 50% overhead).

In the following sections, we compare the performance
of UnTracer to three popular coverage-agnostic tracing ap-
proaches. We first explore the performance of two black-
box binary fuzzing tracers: AFL-QEMU (dynamic) and AFL-
Dyninst (static). Secondly, we compare UnTracer’s perfor-
mance against that of the white-box binary fuzzing tracer AFL-
Clang (static assembler-instrumented tracing).

1) Black-box binary tracing: As shown in Figure 7, we
compare UnTracer’s performance to two popular black-box
binary fuzzing tracers—AFL’s dynamically-instrumented trac-
ing via QEMU user-mode emulation (AFL-QEMU) [58],
and Dyninst-based static binary rewriting-instrumented tracing
(AFL-Dyninst) [10]. For one benchmark (sfconvert), AFL-
QEMU and AFL-Dyninst have similar relative execution times
(1.2 and 1.22, respectively) to UnTracer (1.0); however; by
looking at the different datasets for sfconvert, we observe
a clear trend between higher number of timeouts and lower
tracing overheads across all tracers (Table III). In our evalu-
ations, a 500ms test case timeout significantly overshadows a
typical test case execution of 0.1–1.0ms.

AFL-Dyninst outperforms AFL-QEMU in three bench-
marks (bsdtar, readelf, tcpdump), but as these
benchmarks all vary in complexity (e.g., number of basic
blocks, execution times, etc.), we are unable to identify which
benchmark characteristics are optimal for AFL-Dyninst’s per-
formance. Across all benchmarks, UnTracer achieves an aver-

Fig. 9. Distribution of each tracer’s relative execution time averaged per-
test case for one 24-hour cjson dataset. The horizontal grey dashed line
represents the average baseline execution speed. Red dots represent coverage-
increasing test cases identified by UnTracer.

age relative execution time of 1.003 (0.3% overhead), while
AFL-QEMU and AFL-Dyninst average relative execution
times of 7.12 (612% overhead) and 6.18 (518% overhead),
respectively. The average Relative Standard Deviation (RSD)
for each tracer was less than 4%. In general, our results show
UnTracer reduces the overhead of tracing black-box binaries
by up to four orders of magnitude.

Mann Whitney U-test scoring: Following Klees et
al.’s [59] recommendation, we utilize the Mann Whitney U-
test to determine if UnTracer’s execution overhead is stochasti-
cally smaller than AFL-QEMU’s and AFL-Dyninst’s. First we
compute all per-dataset execution times for each benchmark6

and tracer combination; then for each benchmark dataset
we apply the Mann Whitney U-test with 0.05 significance
level on execution times of UnTracer versus AFL-QEMU
and UnTracer versus AFL-Dyninst. Averaging the resulting
p-values for each benchmark and tracer combination is less
than .0005 for UnTracer compared (pair-wise) to AFL-QEMU
and AFL-Dyninst. Given that these p-values are much smaller
than the 0.05 significance level, we conclude there exists
a statistically significant difference in the median execution
times of UnTracer versus AFL-QEMU and AFL-Dyninst.

Vargha and Delaney Â12 scoring: To determine the
extent to which UnTracer’s execution time outperforms AFL-
QEMU’s and AFL-Dyninst’s, we apply Vargha and Delaney’s
Â12 statistical test [60]. For all comparisons among benchmark
trials the resulting Â12 statistic is 1.0—exceeding the conven-
tionally large effect size of 0.71. Thus we conclude that the
difference in execution times between UnTracer versus either
black-box tracer is statistically large.

2) White-box binary tracing: In Figure 8, we show the
benchmark overheads of UnTracer, and AFL’s white-box bi-
nary (static assembly-time instrumented) tracer AFL-Clang.
AFL-Clang averages a relative execution time of 1.36 (36%
overhead) across all eight benchmarks, while UnTracer aver-
ages 1.003 (0.3% overhead) (average RSD for each tracer was
less than 4%). As is the case for black-box binary tracers AFL-

6We ignore sfconvert in all statistical evaluations as its high number of
timeouts results in all tracers having similar overhead.

100 101 102 103 104 105 106 107

Percent of Dataset Processed (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Pe
rfo

rm
an

ce

AFL-QEMU AFL-Dyninst AFL-Clang UnTracer

Fig. 10. Averaged relative performance of all tracers over the percentage
of test cases processed for one 24-hour bsdtar dataset. Here, 1.0 refers to
baseline (maximum) performance. Each grey dashed vertical line represents a
coverage-increasing test case.

QEMU and AFL-Dyninst, in one benchmark with a large num-
ber of timeouts—sfconvert—AFL-Clang’s performance is
closest to baseline (nearly matching UnTracer’s).

Mann Whitney U-test scoring: On average per dataset,
the resulting p-values ranged from .00047 to .015—though
only in one instance did the p-value exceed .0005. Thus we
conclude that there is a statistically significant difference in
median execution times of UnTracer versus AFL-Clang.

Vargha and Delaney Â12 scoring: Among all trials the
resulting Â12 statistics range from 0.76 to 1.0. As the minimum
of this range exceeds 0.71, we conclude UnTracer’s execution
time convincingly outperforms AFL-Clang’s.

Figure 9 shows the distributions of overheads for each
tracer on one dataset of the cjson benchmark. The coverage-
increasing test cases (red dots) are clearly separable from
the non-coverage-increasing test cases for UnTracer, with the
coverage-increasing test cases incurring double the overhead
of tracing with AFL-Dyninst alone.

Figure 10 shows how UnTracer’s overhead evolves over
time and coverage-increasing test cases. Very early in the
fuzzing process, the rate of coverage-increasing test cases
is high enough to degrade UnTracer’s performance. As time
progresses, the impact of a single coverage-increasing test
case is inconsequential and UnTracer gradually approaches 0%
overhead. In fact, by 1000 test cases, UnTracer has 90% of
the native binary’s performance. This result also shows that
there is an opportunity for a hybrid coverage-guided tracing
model, where initial test cases are always traced until the rate
of coverage-increasing test cases diminishes to the point where
UnTracer becomes beneficial.

F. Dissecting UnTracer’s Overhead
While Untracer achieves significantly lower overhead com-

pared to conventional coverage-agnostic tracers (i.e., AFL-
QEMU, AFL-Dyninst, AFL-Clang), it remains unclear which
operations are the most performance-taxing. As shown in
Algorithm 1, UnTracer’s high-level workflow comprises the
following: (1) starting the interest oracle and tracer binary
forkservers; (2) identifying coverage-increasing test cases by
executing them on the oracle; (3) tracing coverage-increasing

bs
dta

r

ce
rt-

ba
sic

cjs
on

djp
eg

pd
fto

htm
l

rea
de

lf

sfc
on

ve
rt

tcp
du

mp
av

g.

Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

po
rti

on
 o

f U
nT

ra
ce

r O
ve

rh
ea

d
stop fsrvr trace unmodify start fsrvr

Fig. 11. Visualization of the overheads per UnTracer’s four components
related to coverage-increasing test case processing for each benchmark.

test cases’ code coverage by executing them on the tracer; (4)
stopping the oracle’s forkserver; (5) unmodifying (removing
interrupts from) basic blocks in the oracle; and (6) restarting
the oracle’s forkserver. Since UnTracer identifies coverage-
increasing test cases as those which trigger the oracle’s in-
terrupt, non-coverage-increasing test cases—the overwhelm-
ing majority—exit the oracle cleanly without triggering any
interrupts. Thus, executing non-coverage-increasing test cases
on the oracle is equivalent to executing them on the original
(baseline) binary. Based on this, UnTracer’s only overhead is
due to processing coverage-increasing test cases.

In our evaluation of UnTracer’s overhead, we add timing
code around each component run for every coverage-increasing
test case: coverage tracing with the tracer (trace), stopping
the oracle’s forkserver (stop fsrvr), unmodifying the ora-
cle (unmodify), and restarting the oracle (start fsrvr).
We average all components’ measured execution times across
all coverage-increasing test cases, and calculate their respective
proportions of UnTracer’s total overhead. Figure 11 shows the
breakdown of all four components’ execution time relative
to total overhead. The graph shows that the two largest
components of UnTracer’s overhead are coverage tracing and
forkserver restarting.

Tracing: Unsurprisingly, coverage tracing (trace) con-
tributes to the almost 80% of UnTracer’s overhead across
all benchmarks. Our implementation relies on Dyninst-based
static binary rewriting-instrumented black-box binary tracing.
As our evaluation results (Figure 7) show, in most cases,
Dyninst adds a significant amount of overhead. Given Un-
Tracer’s compatibility with other binary tracers, there is an op-
portunity to take advantage of faster tracing (e.g., AFL-Clang
in a white-box binary tracing scenario) to lower UnTracer’s
total overhead.

Forkserver restarting: Restarting the oracle’s forkserver
(start fsrvr) is the component with second-highest over-
head. In binaries with shorter test case execution times
(e.g., cjson, readelf, and tcpdump), the proportion of
tracing time decreases, causing more overhead to be spent
on forkserver restarting. Additionally, in comparison to Un-
Tracer’s constant-time forkserver-stopping operation (stop
fsrvr), forkserver-restarting relies on costly process creation

100 101 102 103 104

Test Cases Processed

0.0

0.2

0.4

0.6

0.8

1.0

R
a
te

 o
f

C
o
v
e
ra

g
e
-I

n
cr

e
a
si

n
g
 T

e
st

 C
a
se

s bsdtar

cert-basic

cjson

djpeg

pdftohtml

readelf

sfconvert

tcpdump

Fig. 12. The rates of coverage-increasing test cases encountered over the
total number of test cases processed, per benchmark.

(e.g., fork(), execve()) and inter-process communica-
tion (e.g., pipe(), read(), write()). Previous work
looks at optimizing these system calls for fuzzing [61], but
given UnTracer’s low overhead in our evaluation, further
optimization adds little performance improvement. However,
we can imagine niche contexts where such approaches would
yield meaningful performance improvements.

G. Overhead versus Rate of Coverage-increasing test cases
Below, we discuss the potential performance advantage of

a hybrid approach combining coverage-guided and coverage-
agnostic tracing (e.g., AFL [5], libFuzzer [6], honggFuzz [4]).
In contrast to existing fuzzing tracers, which face high over-
head due to tracing all generated test cases, UnTracer achieves
near-zero overhead by tracing only coverage-increasing test
cases—the rate of which decreases over time for all bench-
marks (Figure 12). Compared to AFL, UnTracer’s cover-
age tracing is slower on average—largely due to its trace
reading/writing relying on slow file input/output operations.
Thus, as is the case in our evaluations (Table III), coverage-
guided tracing offers significant performance gains when few
generated test cases are coverage-increasing. For scenarios
where a higher percentage of test cases are coverage-increasing
(e.g., fuzzers with “smarter” test case generation [7], [39], [9]),
our approach may yield less benefit.

In such cases, overhead may be minimized using a hy-
brid fuzzing approach that switches between coverage-guided
and coverage-agnostic tracing, based on the observed rate of
coverage-increasing test cases. We first identify a crossover
threshold—the rate of coverage-increasing test cases at which
coverage-guided tracing’s overhead exceeds coverage-agnostic
tracing’s. During fuzzing, if the rate of coverage-increasing
test cases drops below the threshold, coverage-guided tracing
becomes the optimal tracing approach; its only overhead is
from tracing the few coverage-increasing test cases. Con-
versely, if the rate of coverage-increasing test cases exceeds the
threshold, coverage-agnostic tracing (e.g., AFL-Clang, AFL-
QEMU, AFL-Dyninst) is optimal.

To develop a universally-applicable threshold for all tracing
approaches, we average the overheads of coverage-increasing
test cases across all trials in our tracer-benchmark evaluations.
We then model overhead as a function of the rate of coverage-

10
2

10
1

10
0

Rate of Coverage-Increasing Test Cases

0

5

10

15

20

25

30

35

R
el

at
iv

e
E

xe
cu

tio
n

 T
im

e

bsdtar

cert-basic

cjson

djpeg

pdftohtml

readelf

sfconvert

tcpdump

avg.

Fig. 13. Model of the relationship between coverage-increasing test case rate
and UnTracer’s overhead per test case. For all rates left of the leftmost dashed
vertical line, UnTracer’s overhead per test case is less than AFL-Clang’s.
Likewise, for all rates left of the rightmost dashed vertical line, it is less than
AFL-QEMU’s and AFL-Dyninst’s. Not shown is the average rate of coverage-
increasing test cases observed during our evaluations (4.92E-3).

increasing test cases; we apply this model to identify the
coverage-increasing test case rates where UnTracer’s overhead
exceeds AFL-Clang’s, and AFL-QEMU’s and AFL-Dyninst’s.
As shown in Figure 13, for all rates of coverage-increasing test
cases below 2% (the leftmost dashed vertical line), UnTracer’s
overhead per test case is less than AFL-Clang’s. Similarly,
UnTracer’s overhead per test case is less than AFL-QEMU’s
and AFL-Dyninst’s for all rates less than 50% (the rightmost
vertical dashed line).

VII. HYBRID FUZZING EVALUATION
State-of-the-art hybrid fuzzers (e.g., Driller [18] and

QSYM [19]) combine program-directed mutation (e.g., via
concolic execution) with traditional blind mutation (e.g.,
AFL [5]). Hybrid approaches offer significant gains in code
coverage at the cost of reduced test case execution rate. In this
section, we compare UnTracer, Clang [5] (white-box tracing),
and QEMU [5] (black-box dynamically-instrumented tracing)
implementations of the state-of-the-art hybrid fuzzer QSYM
on seven of our eight benchmarks.7 Exploring the benefit
of UnTracer in a hybrid fuzzing scenario is important as
hybrid fuzzers make a fundamental choice to spend less time
executing test cases (hence tracing) and more time on mutation.
While we provide an estimate of the impact hybrid fuzzing has
on coverage-guided tracing’s value in Section III, this section
provides concrete data on the impact to UnTracer of a recent
hybrid fuzzer.

1) Implementing QSYM-UnTracer: We implemented [28]
QSYM-UnTracer in QSYM’s core AFL-based fuzzer, which
tracks coverage (invoked by run_target()) in sev-
eral contexts: test case trimming (trim_case()), test
case calibration (calibrate_case()), test case sav-
ing (save_if_interesting()), hybrid fuzzing sync-
ing (sync_fuzzers()), and the “common” context used
for most test cases (common_fuzz_stuff()). Below we
briefly discuss design choices specific to each.

7We exclude sfconvert from this evaluation since the QEMU-based
variant of QSYM crashes on all eight experimental trials.

bs
dta

r

ce
rt-

ba
sic

cjs
on

djp
eg

pd
fto

htm
l

rea
de

lf

tcp
du

mp
av

g.

Benchmark

0

2

4

6

8

10

12

14

16

R
el

at
iv

e
A

ve
ra

ge
 N

um
be

r o
f E

xe
cu

tio
ns

QSYM-QEMU QSYM-Clang QSYM-UnTracer

Fig. 14. Per-benchmark relative average executions in 24 hours of QSYM-
UnTracer versus QSYM-QEMU and QSYM-Clang.

Trimming and calibration: test case trimming and cali-
bration must be able to identify changes in a priori coverage.
Thus the interest oracle is unsuitable since it only identifies
new coverage, and we instead utilize only the tracer binary.

Saving timeouts: A sub-procedure of test case saving in-
volves identifying unique timeout-producing and unique hang-
producing test cases by tracing and comparing their coverage
to a global timeout coverage. Since AFL only tracks this infor-
mation for reporting purposes (i.e., timeouts and hangs are not
queued), and using an interest oracle or tracer would ultimately
add unwanted overhead for binaries with many timeouts (e.g.,
djpeg (Table III)), we configure UnTracer-AFL, AFL-Clang,
and AFL-QEMU to only track total timeouts.

For all other coverage contexts we implement the UnTracer
interest oracle and tracer execution model as described in
Section V.

A. Evaluation Overview
To identify the performance impact from using UnTracer in

hybrid fuzzing we incorporate it in the state-of-the-art hybrid
fuzzer QSYM and evaluate its against existing Clang- [5] and
QEMU-based [5] QSYM implementations. Our experiments
compare the number of test cases executed for all three
hybrid fuzzer variants for seven of the eight benchmarks from
Section VI (Table III) with 100ms timeouts. To account for ran-
domness, we average the number of test cases executed from
8, 24-hour trials for each variant/benchmark combination. To
form an average result for each variant across all benchmarks,
we compute a per-variant geometric mean.

We distribute all trials across eight virtual machines among
four workstations. Each host is a six-core Intel Core i7-7800X
CPU @ 3.50GHz with 64GB of RAM that runs two, two-CPU
6GB virtual machines. All eight virtual machines run Ubuntu
16.04 x86 64 (as opposed to 18.04 for previous experiments
due to QSYM requirements). Figure 14 presents the results for
each benchmark and the geometric mean across all benchmarks
scaled to our baseline of the number of test cases executed by
QSYM-QEMU.

B. Performance of UnTracer-based Hybrid Fuzzing
As shown in Figure 14, on average, QSYM-UnTracer

achieves 616% and 79% more test case executions than

QSYM-QEMU and QSYM-Clang, respectively. A potential
problem we considered was the overhead resulting from exces-
sive test case trimming and calibration. Since our implemen-
tation of QSYM-UnTracer defaults to the slow tracer binary
for test case trimming and calibration, an initial problem we
considered was the potential overhead resulting from either
operation. However, our results show that the performance
advantage of interest oracle-based execution (i.e., the “common
case”) far outweighs the performance deficit from trimming
and calibration tracing.

VIII. DISCUSSION
Here we consider several topics related to our evalua-

tion and implementation. First, we discuss the emergence of
hardware-assisted coverage tracing, offering a literature-based
estimation of its performance with and without coverage-
guided tracing. Second, we detail the modifications required
to add basic block edge coverage support to UnTracer and the
likely performance impact of moving to edge-based coverage.
Lastly, we highlight the engineering needed to make UnTracer
fully support black-box binaries.

A. UnTracer and Intel Processor Trace
Recent work proposes leveraging hardware support for

more efficient coverage tracing. kAFL [11], PTfuzz [12], and
honggFuzz [4] adapt Intel Processor Trace (IPT) [35] for
black-box binary coverage tracing. IPT saves the control-flow
behavior of a program to a reserved portion of memory as it
executes. After execution, the log of control-flow information
is used in conjunction with an abstract version of the program
to generate coverage information. Because monitoring occurs
at the hardware-level, it is possible to completely capture
a program’s dynamic coverage at the basic block, edge, or
path level incurring modest run time overheads. The three
main limitations of IPT are its requirement of a supporting
processor, time-consuming control-flow log decoding, and its
compatability with only x86 binaries.

Despite these limitations, it is important to understand
how IPT impacts coverage-guided tracing. From a high level,
coverage-guided tracing works with IPT because it is or-
thogonal to the tracing mechanism. Thus, an IPT variant
of UnTracer would approach 0% overhead sooner than our
Dyninst-based implementation due to IPT’s much lower tracing
overhead. From a lower level, the question arises as to the
value of coverage-guided tracing with relatively cheap black-
box binary coverage tracing. To estimate IPT’s overhead in the
context of our evaluation, we look to previous work. Zhang
et al. [12] present a fuzzing-oriented analysis of IPT that
shows it averaging around 7% overhead relative to AFL-Clang-
fast. Although we cannot use this overhead result directly as
we compile all benchmarks with AFL-Clang, according to
AFL’s author, AFL-Clang is 10–100% slower than AFL-Clang-
fast [5]. By applying these overheads to the average overhead
of 36% of AFL-Clang from our evaluation, AFL-Clang-fast’s
projected overhead is between 18–32% and IPT’s projected
overhead is between 19–35%.

B. Incorporating Edge Coverage Tracking
As discussed in Section II-B, two coverage metrics dom-

inate the fuzzing literature: basic blocks and basic block
edges. UnTracer, our implementation of coverage-guided trac-
ing, uses basic block coverage. Alternatively, many popular
fuzzers (e.g., AFL [5], libFuzzer [6], honggFuzz [4]) use edge

B3

B2

With
Critical Edge

B1

B3

B2

B1

B4

Without
Critical Edge

Covered
Blocks

Implied
Edges

Critical
Edges

B1,B2,
B3

B1B2,
B2B3

B1B3

Covered
Blocks

Implied
Edges

Critical
Edges

B1,B2,
B3

B1B2,
B2B3

none

Fig. 15. An example of the critical edge problem (left) and its solution
(right). To remove the critical edge B1-B3, an empty “dummy” block (B4)
is inserted to introduce two new edges, B1-B4 and B4-B3. Such approach
is widely used by software compilers to optimize flow analyses [62].

coverage. While the trade-offs between basic block and edge
coverage metrics have yet to be studied with respect to fuzzing
outcomes, we believe that it is important to consider coverage-
guided tracing’s applicability to edge coverage metrics.

The first point to understand is that most fuzzers that
use edge coverage metrics actually rely on basic block-level
tracing [63]. Key to enabling accurate edge coverage while
only tracing basic blocks is the removal of critical edges.
A critical edge is an edge in the control-flow graph whose
starting/ending basic blocks have multiple outgoing/incoming
edges, respectively [62]. Critical edges make it impossible to
identify which edges are covered from knowing only the basic
blocks seen during execution. This inflates coverage and causes
the fuzzer to erroneously discard coverage-increasing inputs.

The solution to the critical edge problem is to split each by
inserting an intermediate basic block, as shown in Figure 15.
The inserted “dummy” basic block consists of a direct control-
flow transfer to the original destination basic block. For
white-box binaries, edge-tracking fuzzers honggFuzz [4] and
libFuzzer [6] fix critical edges during compilation [63]. This
approach works for white-box use cases of coverage-guided
tracing as well. Unfortunately, how to adapt this approach to
black-box binaries is an open technical challenge.

With respect to performance, the impact of moving from
basic block coverage to edge coverage is less clear. It is clear
that, given that edge coverage is a super-set of basic block cov-
erage, the rate of coverage-increasing test cases will increase.
To determine if the increase in the rate of coverage-increasing
test cases is significant enough to disrupt the asymmetry that
gives coverage-guided tracing its performance advantage, we
reference the results in Figure 13 and Table II. Given that
seven out of eight of our benchmarks have rates of coverage-
increasing test cases below 1 in 100,000 and Figure 13
shows that UnTracer provides benefit for rates below 1 in 50,
moving to edge-based coverage needs to induce a 4-orders-of-
magnitude increase in the rate of coverage-increasing test cases
to undermine UnTracer’s value. Such an increase is unlikely
given Table II, which shows that even for fuzzers using edge
coverage, the rate of coverage-increasing test cases is in line
with the rates in our evaluation. Thus, given UnTracer’s near-
0% overhead, we expect that any increase in the rate of
coverage-increasing test cases due to moving to edge coverage
will not change the high-level result of this paper.

C. Comprehensive Black-Box Binary Support
Niche fuzzing efforts desire support for black-box (source-

unavailable) binary coverage tracing. Currently, UnTracer re-
lies on a mix of black- and white-box binary instrumentation

for constructing its two versions of the target binary. For tracer
binaries, we use Dyninst-based black-box binary rewriting [25]
to insert the forkserver and tracing infrastructure; for oracles,
we re-purpose AFL’s assembler front-end (afl-as) [5] to
insert the forkserver. As discussed in Section V-B, our initial
implementation used Dyninst to instrument the oracle binary,
but we had to switch at afl-as due to unresolved perfor-
mance issues. Though instrumenting the oracle’s forkserver at
assembly-time requires assembly code access, we expect that
inserting the forkserver is not a technical challenge for modern
black-box binary rewriters [64], [65], [66], [67] or through
function hooking (e.g., via LD_PRELOAD [68]).

IX. RELATED WORK
Two research areas orthogonal, but, closely related to

coverage-guided tracing are improving test case generation,
because improvements here increase the rate of coverage-
increasing test cases and system optimizations, because they
share the net outcome of improving overall fuzzer perfor-
mance. We overview recent work in each area and relate those
results back to coverage-guided tracing.

A. Improving Test Case Generation
Coverage-guided grey-box fuzzers like AFL [5] and lib-

Fuzzer [6] generally employ “blind” test case generation—
relying on random mutation, prioritizing coverage-increasing
test cases. A drawback of this strategy is stalled coverage, e.g.,
when mutation fails to produce test cases matching a target
binary’s magic bytes (multi-byte strings or numbers) compari-
son operations. Research approaches this problem from several
directions: Driller [18] and QSYM [19] use concolic execution
(i.e., a mix of concrete and symbolic execution) to attempt to
solve magic byte comparisons via symbolic path constraints.
As is common with symbolic execution, exponential path
growth becomes a limiting factor as target binary complexity
increases. honggFuzz [4] and VUzzer [7] both leverage static
and dynamic analysis to identify locations and values of
magic bytes in target binaries. Steelix [9] improves coverage
by inferring magic bytes from lighter-weight static analysis
and static instrumentation. Angora [39] incorporates byte-
level taint tracking, outperforming Steelix’s coverage on the
synthetic LAVA datasets [69]. However, despite seeing higher
rates of coverage-increasing test cases, these fuzzers still face
the overhead of tracing all generated test cases.

Instead of attempting to focus mutation on match magic
byte comparisons all at once, an alternative set of approaches
uses program transformation to make matching more tractable.
AFL-lafIntel [70] unrolls magic bytes into single comparisons
at compile-time, but currently only supports white-box bina-
ries. MutaGen [71] utilizes mutated “input-producing” code
from the target binary for test case generation, but it relies
on input-producing code availability, and faces slow execution
speed due to dynamic instrumentation. T-Fuzz [47] attempts
to strip target binaries of coverage-stalling code, but suffers
“transformational explosion” on complex binaries.

Changes in test case mutation schemes have also offered
potential workarounds to stalled coverage. FidgetyAFL [58],
AFLFast [8], and VUzzer all prioritize mutating test cases ex-
ercising rare basic blocks. Ultimately, coverage-guided fuzzers
identify coverage-increasing test cases by tracing the coverage
of all test cases. While such approaches decrease the number
of test cases required to create a coverage-increasing test case,

their rates of discarded test cases mean that coverage-guided
tracing represents a performance improvement.

B. System Scalability
System scalability represents an additional focus of re-

search on improving fuzzing. AFL’s execution monitoring
component avoids overhead from repetitive execve() calls
by instead using a fork-server execution model [50]. Xu et
al. [61] further improve AFL and libFuzzer’s performance
by developing several fuzzer-agnostic operating primitives.
Distributed fuzzing has also gained popularity; Google’s Clus-
terFuzz [72] (the backbone of OSS-Fuzz [3]) allocates more
resources to fuzzing by parallelizing across thousands of
virtual machines. As these efforts aim to improve performance
of all fuzzers, they serve as complements to other fuzzing
optimizations (e.g., coverage-guided tracing).

X. CONCLUSION
Coverage-guided tracing leverages the fact that coverage-

increasing test cases are the overwhelmingly uncommon case
in fuzzing by modifying target binaries so that they self-report
when a test case produces new coverage. While our results
show that the additional steps involved in coverage-guided
tracing (namely, running the modified binary, tracing, and
unmodifying based on new coverage) are twice as expensive
as tracing alone, the ability to execute test cases at native
speed, combined with the low rate of coverage-increasing test
cases, yields overhead reductions of as much as 1300% and
70% for black- and white-box binaries, respectively. Applying
coverage-guided tracing in hybrid fuzzing achieves 616% and
79% more test case executions than black- and white-box
tracing-based hybrid fuzzing, respectively. Thus, given that
tracing consumes over 90% of the total time spent fuzzing—
even for fuzzers that focus on test case generation—reductions
in tracing time carry over to fuzzing as a whole;

From a higher level, our results highlight the potential
advantages of identifying and leveraging asymmetries inherent
to fuzzing. Fuzzing relies on executing many test cases in the
hopes of finding a small subset that are coverage-increasing
or crash-producing. Even given recent attempts to reduce the
number of discarded test cases, they are still the common
case. Another opportunity is that most of the code itself is
uninteresting, but must be executed to reach the interesting
code. Thus, we envision a future where faster than full-
speed execution is possible by finding ways to skip other
“uninteresting” but common aspects of fuzzing.

ACKNOWLEDGMENT
We would like to thank our reviewers for helping us

improve the paper. We also thank Xiaozhu Meng from the
Dyninst project and Insu Yun from the QSYM project for
graciously assisting us in utilizing their software in our im-
plementations. Lastly, we thank Michal Zalewski for providing
guidance on the inner workings of AFL. This material is based
upon work supported by the National Science Foundation
under Grant No. 1650540.

REFERENCES
[1] “CVE Details: The ultimate security vulnerability datasource,”

Tech. Rep., 2018. [Online]. Available: https://www.cvedetails.com/
vulnerabilities-by-types.php

[2] E. Bounimova, P. Godefroid, and D. Molnar,
“Billions and Billions of Constraints: Whitebox Fuzz
Testing in Production,” Tech. Rep., 2012. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
billions-and-billions-of-constraints-whitebox-fuzz-testing-in-production/

[3] K. Serebryany, “OSS-Fuzz - Google’s continuous fuzzing service for
open source software,” in USENIX Security Symposium, ser. USENIX,
2017.

[4] R. Swiecki, “honggfuzz,” 2018. [Online]. Available: http://honggfuzz.
com/

[5] M. Zalewski, “American fuzzy lop,” 2017. [Online]. Available:
http://lcamtuf.coredump.cx/afl/

[6] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssani-
tizer,” in IEEE Cybersecurity Development Conference, ser. SecDev,
2016, pp. 157–157.

[7] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” in Network and
Distributed System Security Symposium, ser. NDSS, 2017.

[8] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Grey-
box Fuzzing As Markov Chain,” in ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS, 2016, pp. 1032–
1043.

[9] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: Program-state Based Binary Fuzzing,” in ACM Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE, 2017, pp.
627–637.

[10] talos vulndev, “AFL-Dyninst,” 2018. [Online]. Available: https:
//github.com/talos-vulndev/afl-dyninst

[11] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in
USENIX Security Symposium, ser. USENIX, 2017, pp. 167–182.

[12] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “PTfuzz: Guided
Fuzzing with Processor Trace Feedback,” IEEE Access, vol. 6, pp.
37 302–37 313, 2018.

[13] M. Security, “Dharma: A generation-based, context-free grammar
fuzzer.” 2018. [Online]. Available: https://github.com/MozillaSecurity/
dharma

[14] J. Johnson, “gramfuzz,” 2018. [Online]. Available: https://github.com/
d0c-s4vage/gramfuzz

[15] M. Eddington, “Peach fuzzing platform,” 2018. [Online]. Available:
https://www.peach.tech/products/peach-fuzzer/

[16] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic Software Vulnerability Detection,”
in IEEE Symposium on Security and Privacy, ser. Oakland, 2010, pp.
497–512.

[17] M. Vuagnoux, “Autodafe, an Act of Software Torture,” 2006. [Online].
Available: http://autodafe.sourceforge.net/

[18] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Network and Dis-
tributed System Security Symposium, ser. NDSS, 2016, pp. 2–16.

[19] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical
Concolic Execution Engine Tailored for Hybrid Fuzzing,” in USENIX
Security Symposium, ser. USENIX, 2018.

[20] C. Cadar, D. Dunbar, D. R. Engler, and others, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs.” in USENIX Symposium on Operating Systems Design and
Implementation, ser. OSDI, 2008, pp. 209–224.

[21] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in IEEE Symposium on Security and Privacy,
ser. Oakland, 2012, pp. 380–394.

[22] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in ACM SIGPLAN
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS, 2011, pp. 265–278.

[23] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: whitebox fuzzing
for security testing,” Queue, vol. 10, no. 1, p. 20, 2012.

[24] J. Hertz and T. Newsham, “ProjectTriforce: AFL/QEMU fuzzing with
full-system emulation.” 2017. [Online]. Available: https://github.com/
nccgroup/TriforceAFL

[25] “Dyninst API,” 2018. [Online]. Available: https://dyninst.org/dyninst
[26] S. Nagy and M. Hicks, “FoRTE-FuzzBench: FoRTE-Research’s

fuzzing benchmarks,” 2019. [Online]. Available: https://github.com/
FoRTE-Research/FoRTE-FuzzBench

[27] ——, “afl-fid: A suite of AFL modifications for fixed input
dataset experiments,” 2019. [Online]. Available: https://github.com/
FoRTE-Research/afl-fid

[28] ——, “UnTracer-AFL: An AFL implementation with UnTracer
(our coverage-guided tracer),” 2019. [Online]. Available: https:
//github.com/FoRTE-Research/UnTracer-AFL

[29] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI, 2008, pp. 206–215.

[30] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[31] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected Greybox Fuzzing,” in ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS, 2017, pp. 2329–2344.

[32] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in International Conference on Software Engineering, ser.
ICSE, 2009, pp. 474–484.

[33] P. Godefroid, M. Y. Levin, D. A. Molnar, and others, “Automated
whitebox fuzz testing.” in Network and Distributed System Security
Symposium, ser. NDSS, 2008, pp. 151–166.

[34] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path Sensitive Fuzzing,” in IEEE Symposium on Security and Privacy,
ser. Oakland, 2018, pp. 660–677.

[35] Intel, “Intel Processor Trace Tools,” 2017. [Online]. Available:
https://software.intel.com/en-us/node/721535

[36] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Cus-
tomized Program Analysis Tools with Dynamic Instrumentation,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI, 2005, pp. 190–200.

[37] A. Nikolic, “Guided Fuzzing And Binary Blobs,” Information Security
Symposium (Fsec), 2016. [Online]. Available: https://www.youtube.
com/watch?v=zQb-QT7tiFQ

[38] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the
ACM, vol. 31, no. 5, pp. 532–533, 1988.

[39] P. Chen and H. Chen, “Angora: efficient fuzzing by principled search,”
in IEEE Symposium on Security and Privacy, ser. Oakland, 2018.

[40] Shellphish, “ShellPhuzz,” 2018. [Online]. Available: https://github.com/
shellphish/fuzzer

[41] “DARPA Cyber Grand Challenge,” 2018. [Online]. Available:
https://github.com/cybergrandchallenge

[42] Y. Shoshitaishvili, “CGC Binaries: Compiled CGC binaries for
experimentation porpoises.” 2017. [Online]. Available: https://github.
com/zardus/cgc-bins

[43] J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based
framework for control flow reconstruction from binaries,” in Inter-
national Workshop on Verification, Model Checking, and Abstract
Interpretation, ser. VMCAI, 2009, pp. 214–228.

[44] H. Theiling, “Extracting safe and precise control flow from binaries,” in
IEEE International Conference on Real-Time Systems and Applications,
ser. RCTSA, 2000, pp. 23–30.

[45] D. Kästner and S. Wilhelm, “Generic control flow reconstruction from
assembly code,” in ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, Tools and Theory for Embedded Systems,
ser. LCTES, 2002, pp. 46–55.

[46] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, ser. Oakland,
2016.

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.microsoft.com/en-us/research/publication/billions-and-billions-of-constraints-whitebox-fuzz-testing-in-production/
https://www.microsoft.com/en-us/research/publication/billions-and-billions-of-constraints-whitebox-fuzz-testing-in-production/
http://honggfuzz.com/
http://honggfuzz.com/
http://lcamtuf.coredump.cx/afl/
https://github.com/talos-vulndev/afl-dyninst
https://github.com/talos-vulndev/afl-dyninst
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/dharma
https://github.com/d0c-s4vage/gramfuzz
https://github.com/d0c-s4vage/gramfuzz
https://www.peach.tech/products/peach-fuzzer/
http://autodafe.sourceforge.net/
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://dyninst.org/dyninst
https://github.com/FoRTE-Research/FoRTE-FuzzBench
https://github.com/FoRTE-Research/FoRTE-FuzzBench
https://github.com/FoRTE-Research/afl-fid
https://github.com/FoRTE-Research/afl-fid
https://github.com/FoRTE-Research/UnTracer-AFL
https://github.com/FoRTE-Research/UnTracer-AFL
https://software.intel.com/en-us/node/721535
https://www.youtube.com/watch?v=zQb-QT7tiFQ
https://www.youtube.com/watch?v=zQb-QT7tiFQ
https://github.com/shellphish/fuzzer
https://github.com/shellphish/fuzzer
https://github.com/cybergrandchallenge
https://github.com/zardus/cgc-bins
https://github.com/zardus/cgc-bins

[47] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: fuzzing by program
transformation,” in IEEE Symposium on Security and Privacy, ser.
Oakland, 2018.

[48] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz: Automati-
cally Generating Pathological Inputs,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA, 2018, p. 12.

[49] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-Driven Seed
Generation for Fuzzing,” in IEEE Symposium on Security and Privacy,
ser. Oakland, 2017.

[50] M. Zalewski, “Fuzzing random programs without execve(),”
2014. [Online]. Available: http://lcamtuf.blogspot.com/2014/10/
fuzzing-binaries-without-execve.html

[51] R. Stallman, R. Pesch, S. Shebs, and others, “Debugging with GDB,”
Free Software Foundation, vol. 675, 1988.

[52] A. Brown and G. Wilson, “The Architecture of Open Source Applica-
tions: Elegance, Evolution, and a Few Fearless Hacks,” vol. 1, 2012.

[53] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu, “Kernel probes
(kprobes),” Documentation provided with the Linux kernel sources (v2.
6.29), 2016.

[54] M. Hiramatsu and S. Oshima, “Djprobe–Kernel probing with the
smallest overhead,” in Linux Symposium, ser. Linux Symposium, 2007,
p. 189.

[55] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. Stillwell, and others,
“SCONE: Secure Linux Containers with Intel SGX.” in USENIX
Symposium on Operating Systems Design and Implementation, ser.
OSDI, 2016, pp. 689–703.

[56] M. Rash, “afl-cve: A collection of vulnerabilities discovered
by the AFL fuzzer (afl-fuzz),” 2017. [Online]. Available: https:
//github.com/mrash/afl-cve

[57] Google, “fuzzer-test-suite: Set of tests for fuzzing engines,” 2018.
[Online]. Available: https://github.com/google/fuzzer-test-suite

[58] M. Zalewski, “afl-users > Re: ”FidgetyAFL” implemented in 2.31b,”
2016. [Online]. Available: goo.gl/zmcvZf

[59] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” in ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS, 2018.

[60] A. Vargha and H. D. Delaney, “A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[61] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing New Operating
Primitives to Improve Fuzzing Performance,” in ACM SIGSAC Confer-
ence on Computer and Communications Security, ser. CCS, 2017.

[62] S. S. Muchnick, Advanced compiler design implementation. Morgan
Kaufmann, 1997.

[63] “SanitizerCoverage: Clang 7 documentation,” 2018. [Online]. Available:
https://clang.llvm.org/docs/SanitizerCoverage.html

[64] W. H. Hawkins, J. D. Hiser, M. Co, A. Nguyen-Tuong, and J. W. David-
son, “Zipr: Efficient Static Binary Rewriting for Security,” in IEEE/IFIP
International Conference on Dependable Systems and Networks, ser.
DSN, 2017.

[65] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making Reassembly
Great Again,” in Network and Distributed System Security Symposium,
ser. NDSS, 2017, pp. 2–15.

[66] S. Wang, P. Wang, and D. Wu, “Reassembleable Disassembling,”
in USENIX Security Symposium, ser. USENIX Sec, 2015, pp.
627–642. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/wang-shuai

[67] A. R. Bernat and B. P. Miller, “Anywhere, Any-time Binary Instrumen-
tation,” in ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools, ser. PASTE, 2011, pp. 9–16.

[68] J. Lopez, L. Babun, H. Aksu, and A. S. Uluagac, “A Survey on
Function and System Call Hooking Approaches,” Journal of Hardware
and Systems Security, vol. 1, no. 2, pp. 114–136, 2017.

[69] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robert-
son, F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnerabil-

ity addition,” in IEEE Symposium on Security and Privacy, ser. Oakland,
2016, pp. 110–121.

[70] “laf-intel: Circumventing Fuzzing Roadblocks with Compiler Trans-
formations,” 2016. [Online]. Available: https://lafintel.wordpress.com/

[71] U. Kargén and N. Shahmehri, “Turning Programs Against Each Other:
High Coverage Fuzz-testing Using Binary-code Mutation and Dynamic
Slicing,” in ACM Joint Meeting on Foundations of Software Engineer-
ing, ser. ESEC/FSE, 2015, pp. 782–792.

[72] Google, “ClusterFuzz,” 2018. [Online]. Available: https://github.com/
google/oss-fuzz/blob/master/docs/clusterfuzz.md

http://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
http://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/google/fuzzer-test-suite
goo.gl/zmcvZf
https://clang.llvm.org/docs/SanitizerCoverage.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://lafintel.wordpress.com/
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md

	Introduction
	Background
	An Overview of Fuzzing
	Coverage-Guided Fuzzing
	Coverage Tracing Performance
	Focus of this Paper

	Impact of Discarded test cases
	Experimental Setup
	Results

	Coverage-guided Tracing
	Overview
	The Interest Oracle
	Tracing
	Unmodifying
	Theoretical Performance Impact

	Implementation: UnTracer
	UnTracer Overview
	Forkserver Instrumentation
	Interest Oracle Binary
	Tracer Binary
	Unmodifying the Oracle

	Tracing-only Evaluation
	Evaluation Overview
	Experiment Infrastructure
	Benchmarks
	Baseline
	AFL-Clang
	AFL-QEMU
	AFL-Dyninst

	Timeouts
	UnTracer versus Coverage-agnostic Tracing
	Black-box binary tracing
	White-box binary tracing

	Dissecting UnTracer's Overhead
	Overhead versus Rate of Coverage-increasing test cases

	Hybrid Fuzzing Evaluation
	Implementing QSYM-UnTracer
	Evaluation Overview
	Performance of UnTracer-based Hybrid Fuzzing

	Discussion
	UnTracer and Intel Processor Trace
	Incorporating Edge Coverage Tracking
	Comprehensive Black-Box Binary Support

	Related Work
	Improving Test Case Generation
	System Scalability

	Conclusion
	References

