ICAS: an Extensible Framework for Estimating the
Susceptibility of IC Layouts to Additive Trojans

Timothy Trippel*, Kang G. Shin
Computer Science & Engineering
University of Michigan
Ann Arbor, MI
{trippel.kgshin} @umich.edu

Abstract—The transistors used to construct Integrated Cir-
cuits (ICs) continue to shrink. While this shrinkage improves
performance and density, it also reduces trust: the price to build
leading-edge fabrication facilities has skyrocketed, forcing even
nation states to outsource the fabrication of high-performance
ICs. Outsourcing fabrication presents a security threat because
the black-box nature of a fabricated IC makes comprehensive
inspection infeasible. Since prior work shows the feasibility of
fabrication-time attackers’ evasion of existing post-fabrication
defenses, IC designers must be able to protect their physical
designs before handing them off to an untrusted foundry. To this
end, recent work suggests methods to harden IC layouts against
attack. Unfortunately, no tool exists to assess the effectiveness of
the proposed defenses, thus leaving defensive gaps.

This paper presents an extensible IC layout security analysis
tool called IC Attack Surface (ICAS) that quantifies defensive
coverage. For researchers, ICAS identifies gaps for future de-
fenses to target, and enables the quantitative comparison of
existing and future defenses. For practitioners, ICAS enables
the exploration of the impact of design decisions on an IC’s
resilience to fabrication-time attack. ICAS takes a set of metrics
that encode the challenge of inserting a hardware Trojan into an
IC layout, a set of attacks that the defender cares about, and a
completed IC layout and reports the number of ways an attacker
can add each attack to the design. While the ideal score is zero,
practically, we find that lower scores correlate with increased
attacker effort.

To demonstrate ICAS’ ability to reveal defensive gaps, we
analyze over 60 layouts of three real-world hardware designs (a
processor, AES and DSP accelerators), protected with existing
defenses. We evaluate the effectiveness of each circuit—defense
combination against three representative attacks from the litera-
ture. Results show that some defenses are ineffective and others,
while effective at reducing the attack surface, leave 10’s to 1000’s
of unique attack implementations that an attacker can exploit.

Index Terms—Hardware Security; Fabrication-time Attacks
and Defenses; VLSI

I. INTRODUCTION

The relationship between complexity and security seen in
software also holds for Integrated Circuits (ICs). Since the in-
ception of the IC, transistor sizes have continued to shrink. For
example, compare the 10 pum feature size of the original Intel
4004 processor [1] to the 10 nm feature size of Intel’s recently
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announced Ice Lake processor family [2]. Smaller transistors
enable IC designers to create increasingly complex circuits
with higher performance and lower power-usage. However,
continuing this trend pushes the laws of physics and comes
at a substantial cost: building a 3nm fabrication facility is
estimated to cost $15-20B [3].

Such costs are prohibitive for not only most semiconductor
companies, but also nation states. Thus, most hardware
design houses are fabless, i.e., while they are able to fully
design and lay out an IC, they must outsource its fabrication.
Outsourcing combined with the black-box nature of testing
a fabricated IC requires fabless semiconductor companies to
trust that their physical designs will not be altered maliciously
by the foundry, also known as a fabrication-time attack.
Previous work demonstrates several ways a fabrication-time
attacker can insert a hardware Trojan into an otherwise trusted
IC [4]-[6]. A2 [6] demonstrates the most stealthy and control-
lable IC fabrication-time attack to date, whereby a hardware
Trojan with a complex, yet stealthy, analog trigger circuit is
inserted into the finalized layout of a processor. Even though
the inserted Trojan is small, the attacker can trigger it and
escalate to a persistent software-level attack (i.e., a hardware
foothold [7]) using only user-mode code.

Early work focuses on post-fabrication detection of hard-
ware Trojans in ICs [8]. Broadly, there are two classes of
detection: 1) side-channel analysis and 2) Trojan-activation
via functional testing. Side-channel (power, timing, etc.) anal-
ysis [9]-[12] assumes that the Trojan’s trigger is complex (i.e.,
many logic gates), and thus noticeably changes the physical
characteristics of the chip. For example, inserting the large
amount of extra logic required by a complex trigger into a
design alters the power signature of the device. Alternatively,
Trojan-activation via functional testing assumes that the Tro-
jan’s trigger is simple (i.e., few logic gates [4], [5]), and is
thus easily activated by test vectors. Unfortunately, layering
detection classes is not sufficient as it is shown possible to
create an attack that is both small and stealthy [6].

To address the gaps left by post-fabrication Trojan detection
schemes, recent work focuses on pre-fabrication, IC layout-
level, Trojan prevention [13]-[15]. IC layout-level defenses
work by:

1) increasing placement & routing resource utilization



2) increasing congestion around security-critical design
components.

The lack of resources deprives the attacker of the required
transistors needed to implement their Trojan trigger/attack
circuits, and the increased congestion around security-critical
wires acts as a barrier for the attacker attempting to integrate
their Trojan into the victim design. Ideally, defenders utilize
just enough resources and create enough congestion such that
the attacker cannot implement and insert their attack, while
keeping the design routable. Short of that, the added barriers
require the attacker to expend significantly more resources
(e.g., time) to insert their attack into an IC layout.!

Two IC layout-level defensive approaches exist: undirected
and directed. Undirected approaches aim to (probabilistically)
increase resource utilization and congestion across the entire
layout by altering existing place-and-route parameters (e.g.,
core density [15]) that will likely result in increased resource
utilization and congestion. More recently, a line of directed
approaches have emerged [13], [16] that systematically in-
crease utilization of specific-regions of the device layer, i.e.,
nearby security-critical components. Given that it is infeasible
to occupy the entire device layer in a tamper-evident man-
ner [13], [16], both classes of approaches may leave IC layouts
vulnerable to attack by an untrusted foundry.

To identify gaps in existing defenses and guide future IC
layout-level defenses, we design and implement an extensible
measurement framework that estimates the susceptibility of
an IC layout to foundry-level additive Trojan attacks. Our
framework, IC Attack Surface (ICAS), estimates resilience in
three dimensions that capture the essence and difficulty of
inserting a hardware Trojan at an untrusted foundry:

1) Trojan logic placement: finding unused space to place

additional circuit components

2) Victim/Trojan integration: attaching hardware Trojan

payload to security-critical logic

3) Intra-Trojan routing: connecting the trigger and pay-

load portions of the hardware Trojan
A successful attack requires all three steps.

Using ICAS, we analyze over 60 different IC layouts across
three fully-functional ASIC designs: an AES accelerator, a
DSP accelerator, and an OR1200 processor. For each lay-
out, ICAS reports the coverage against four additive Trojan
attacks [6], [7], [17], [18] that span the digital and analog
domain as well a range of attack outcomes. ICAS’s analysis re-
veals that all existing IC layout-level defenses are incomplete,
leaving 1000’s of opportunities for an attacker at an untrusted
foundry to insert a hardware Trojan. An additional finding is
that even though most existing countermeasures do increase
the complexity of inserting a hardware Trojan, some coun-
termeasures are ineffective. Lastly, ICAS’s analysis suggests
that focusing on exhausting resources on the device layer (i.e.,
transistors) is an incomplete defense; future defenses should
also aim to increase congestion around security-critical wires.

ITime is the most critical resource for the attacker as IC fabrication is
usually bounded in terms of turnaround time.
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Fig. 1. The typical IC design process starts with a textual specification of
design requirements and ends with a fabricated and tested chip. Green check-
boxes mark trusted stages and red x-boxes mark the untrusted step (i.e., an
untrusted foundry). The fabrication step takes a GDSII file (physical IC layout)
as input and produces a wafer of die. While prior work proposes metrics for
untrusted front-end design [17], [21]-[23], no mechanism exists for measuring
an IC layout’s resilience to an untrusted foundry.

This paper makes the following contributions:

o We propose an extensible methodology that estimates the
difficulty of inserting additive hardware Trojans into an
existing IC layout by an untrusted foundry.

o We design, implement, and open-source [19], [20] our ex-
tensible framework, ICAS, that computes various layout-
specific security metrics. The ICAS framework provides
an interface to programmatically query the physical lay-
out of an IC (encoded in the GDSII format) to com-
pute various security metrics with respect to attacks-of-
interest.

o We use ICAS to estimate the effectiveness and expose the
gaps of previously-proposed untrusted foundry defenses
by analyzing over 60 IC layouts of three real-world
hardware cores.

o We identify future directions for defenses that work in a
layered fashion with existing defenses.

II. BACKGROUND
A. IC Design Process

Figure 1 shows the typical IC design process [24], which
consists of three main phases: 1) front-end design, 2) back-
end design, and 3) fabrication. The front-end design phase can
be further split into two design abstraction levels, behavioral
and structural, while a single design abstraction level, physical
(i.e., consists of both analog and digital properties), encom-
passes the back-end. The front-end design process begins by
first describing the functionality of the circuit at the behavioral
level, also known as the Register Transfer Level (RTL),
using a hardware description language (HDL), like VHDL or
Verilog. Next, the behavioral level description of the circuit
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Fig. 2. Typical IC floorplan created during the place-and-route design phase.
The floorplan consists of an I/O pad ring surrounding the chip core. Within the
core is the placement grid. Circuit components are placed and routed within
the placement grid.

is transformed into a structural level description during RTL
synthesis. RTL synthesis is similar to software compilation:
the RTL design is optimized and reduced to a set of logically
connected digital logic gates, called a gate-level netlist (netlists
are commonly described using an HDL language). The gate-
level netlist is then passed to the back-end design phase to
be transformed into something able to be implemented into a
physical chip (i.e., an IC layout) through a process known as
Placement and Routing (PaR).

IC layouts consist of multiple layers. The bottom layers are
device layers, while the top layers are metal layers. Device
layers are used for constructing circuit components (e.g.,
transistors), and the metal layers are used for routing (e.g.,
vias and wiring). The first stage of PaR is creating a floorplan.
Figure 2 illustrates an IC floorplan. To create a floorplan,
the dimensions of the overall chip are specified and the core
area is defined. Typically a ring of I/O pads is then placed
around the chip core, while a placement grid is drawn over the
core. Each tile in the placement grid is known as a placement
site. Circuit components (e.g., standard cells) are then placed
on the placement grid, occupying one or more placement
sites, depending on the size of the component. Lastly, all
components are routed together, using one or more routing
layers. The output from the back-end design is a Graphics
Database System II (GDSII) file that is a geometric description
of the placed-and-routed circuit layout. The GDSII file is then
sent to a fabrication facility where it is manufactured. The
final step is testing and packaging.

B. Hardware Trojans

1) Trojan Components: A hardware Trojan is a malicious
modification to a circuit designed to modify its behavior
during operation [25]. Hardware Trojans have two main com-
ponents: 1) trigger and 2) payload [10], [26], [27]. Prior
work classifies hardware Trojans based on the functionalities
of their trigger and payload mechanisms [10], [26], [27]. In
this paper, we adopt and simplify an existing hardware Trojan
taxonomy [26]; shown in Figure 3.

The trigger mechanism of a hardware Trojan is what initi-
ates the delivery of the Trojan’s payload. Triggers can be built
by adding, removing, or altering existing hardware in an IC.
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Fig. 3. An existing taxonomy of hardware Trojans [26]. This taxonomy
classifies hardware Trojans based on their trigger and payload types.

They can be digital [7] or analog [6]. The ideal trigger is small:
requiring few or no additional circuit components, stealthy:
requiring dozens of rare events to activate, and controllable:
readily attacker deployable, but not so by defenders or through
regular use. There have been several triggers demonstrated
before that span the trade-space of large (requiring many addi-
tional gates) and stealthy [28] to the opposite: small (requiring
no additional gates) and easy to trigger [4], [29]. The most
advanced Trojans are small, stealthy, and controllable [6].
The payload mechanism receives a signal from the trigger
and alters the functionality of the IC. Analog [4], [29] and
digital [6] payloads exist, with a variety of effects. These
effects can leak information [28], alter the internal state of
the IC [6], or cause a system to be unusable (denial-of-
service) [29]. Regardless of effect, the payload mechanism
must route a wire to, or in the vicinity of, some target
“security-critical” [30] wire in the IC design.

2) Trojan Implementations: There are three types of hard-
ware Trojans a malicious foundry can craft into an otherwise
trusted IC layout: additive, substitution, and subtractive. Ad-
ditive Trojans involve inserting additional circuit components
and/or wiring into an existing design. Substitution Trojans
require removing logic with low observability to make room
for additional Trojan circuit components and/or wiring in an
existing circuit design. Lastly, subtractive Trojans require re-
moving circuit components and/or wiring to alter the behavior
of a existing circuit design. The focus of this paper is estimat-
ing the susceptibility of a circuit layout to additive Trojan
attacks. Substitution and subtractive Trojans, while intriguing,
remain largely unexplored by the community. We do not know
of any demonstrably stealthy and controllable substitution or
subtractive Trojans and when researchers do create such an
attack, there exists orthogonal mitigation strategies [31].

Inserting an additive Trojan at an untrusted foundry requires
modifying two fundamental characteristics of an IC’s physical
layout—placement and routing—regardless of how an attacker
implements the Trojan’s trigger and payload. We define Tro-
jan placement to be the act of placing additional hardware
components into an IC layout for the purpose of crafting
a Trojan trigger and payload, Victim/Trojan integration to



be wiring the Trojan’s payload to, or in the vicinity, of a
security-critical net in the victim IC layout, and intra-Trojan
routing to be the act of wiring the hardware Trojan together.
The most challenging aspect of inserting a hardware Trojan
at fabrication-time is finding empty space on the IC’s device
layer to insert the trigger and payload components (Trojan
placement), AND routing the payload to a security-critical net
(Victim/Trojan integration). ICAS estimates each of these
fundamental tasks, in turn identifying weak points in the IC
layout that an attacker might exploit.

III. THREAT MODEL

We adopt a threat model for untrusted foundry attacks
that assumes all steps in the IC design process can be
trusted, except for all of the processes—no matter if they
are outsourced—performed by a foundry (colloquially, fabri-
cation). Figure 1 depicts our threat model. This entails that
the RTL is designed, synthesized, and laid-out by trusted
parties. Post fabrication testing is also performed by a trusted
party. We adopt this threat model since the astronomical
costs to fabricate ICs force most semiconductor companies
to outsource fabrication. To this point, in 2005, the U.S.
government identified the untrusted foundry threat as the most
significant weakness of the microelectronics supply chain [32].

We restrict our threat model to fabrication-time attacks
involving additive Trojans, i.e., hardware Trojans that re-
quire inserting additional circuitry into a physical IC design.
Previous work on substitution/subtractive hardware Trojans
shows that such Trojan insertion methods are addressable by
measuring the controllability and observability of logic at the
behavioral and/or structural level of the IC design, for which
several methods have already been proposed [17], [21], [22],
[33]-[35]. Orthogonally, this work fills the void of quantifying
the susceptibility of an IC design to additive hardware Trojan
insertion at the physical level of the IC design process by an
untrusted foundry.

Focusing on additive hardware Trojans, an adversary can
only insert additional components/wires. They cannot increase
the size of the chip to make additional room for the implants
because this is readily caught by defenders. As a result, an
attacker has two choices: find open space in the design large
enough to accommodate the additional circuitry, or create open
space in the design by moving circuitry around. The latter is
extremely challenging due to its recursive nature, it runs the
risk of violating fragile timing constraints and manufacturing
design rules, and it increases fabrication turnaround time
(which is usually set to three months); any of which could
expose the Trojan. Therefore, our focus is identifying open
spaces suitable for hardware Trojan implementation.

IV. UNTRUSTED FOUNDRY DEFENSES

To protect IC layouts against insertion of a hardware Trojan
by attackers at an untrusted foundry, two classes of defenses
exist: undirected and directed. Undirected defenses leverage
existing tuning knobs available during the IC layout process,

but do not differentiate between security-critical and general-
purpose wires and logic. Thus, undirected approaches provide
probabilistic protection. On the other hand, directed defenses
require augmenting existing PaR tool flows to harden the
resulting IC layout, focusing on deploying defenses systemat-
ically around security-critical wires and logic. Thus directed
approaches provide targeted protection, but increase the com-
plexity of the place-and-route process.

This section provides an overview of the landscape of
undirected and directed defenses. The focus is the mechanism
each defense uses to increase the complexity faced by a
foundry-level attacker. We use the results of the defensive
analysis in this section to develop a set of unifying coverage
metrics in the next section. Finally, in the evaluation, we
evaluate commercial IC layouts using the defense-inspired
metrics to quantify each defense’s coverage.

A. Undirected

The lowest cost approach for protecting an IC layout from a
foundry-level attacker is to take advantage of existing physical
layout parameters (e.g., core density, clock frequency, and max
transition time) offered by commercial CAD tools [15]. The
goal is to increase congestion across the component layer
and the routing layer. Ideally, this also results in increased
congestion around security-critical logic and wires. Practically,
increases in congestion around security-critical logic and wires
is probabilistic.

Increased congestion is a symptom of increased resource
utilization; hence, there are fewer resources available to the
attacker. The most obvious resource that an attacker cares
about are placement sites on the component layer. Increasing
the density, decreases unused placement sites. Without suf-
ficient placement sites, the attacker cannot implement their
Trojan logic. A less obvious resource is attachment points on
security-critical wires that serve as victim/Trojan integration
points. Increasing routing layer congestion (via density and/or
timing constraints) increases the blockage around security-
critical wires, meaning there are less integration points.

B. Directed

To address the shortcoming of undirected approaches, recent
defenses advocate focusing on security-critical logic and wires.
Specifically, the approaches aim to prevent the attacker from
being able to implement their hardware Trojan by occupy-
ing unused placement sites (i.e., transistors) [13], [16]. The
challenge is that the filler cells used by these defenses must
be tamper-evident, i.e., a defender must be able to detect if
an attacker removed filler cells to implement their Trojan.
Previous work shows that filling the entire component layer
with tamper-evident filler cells (e.g. [15]) is infeasible due to
routing congestion [16]. To make routing feasible, the most
recent placement-centric defense focuses on filling the unused
placement sites nearest security-critical logic first [13], [16].

Such placement-centric defenses increase the complexity
faced by the attacker in two ways. First, it is harder for
the attacker to find contiguous unused placement sites to



implement their Trojan’s logic. Second, an indirect compli-
cation is increased intra-Trojan routing complexity. The more
distributed the attacker’s placement sites, the more long (i.e.,
uses upper routing layers) routes the attacker must create.
Additionally, since the unused placement sites are far away
from security critical logic, the attacker must make a longer,
more complex, route to connect their hardware Trojan to the
victim security-critical wire.

V. UNIFIED ATTACK METRICS

Drawing from existing untrusted foundry defenses, we cre-
ate an extensible set of IC layout attack metrics. We unify
the objectives of existing defenses by decomposing the act of
inserting a hardware Trojan into ICs at an untrusted foundry
into three fundamental tasks and corresponding metrics:

1) Trojan logic placement: Trigger Space
2) Victim/Trojan integration: Net Blockage
3) Intra-Trojan routing: Route Distance

These tasks and accompanying metrics are the foundation
for our methodology of assessing defensive coverage of an
IC layout against an untrusted foundry. We implement our
methodology as ICAS.

A. Challenges of Trojan Placement

The first phase of mounting a fabrication-time attack is
Trojan placement. This requires locating unused placement
sites on the placement grid to insert additional circuit com-
ponents. While prior work [13], [15], [16] employs the notion
of limiting the quantity of unused placement sites as a defense
against fabrication-time attacks, how can we characterize
unused placement sites to gain insight into the feasibility of a
fabrication-time attack on a given IC layout?

Only 60-70% of the placement cites are occupied in a
typical IC layout to allow space for routing [6]. To facilitate
intra-Trojan routing, an attacker prefers open placement sites
form contiguous (adjacent) regions. This allows the attacker
to drop-in a pre-designed Trojan, or if one had not been pre-
designed, it minimizes the intra-Trojan routing complexity by
confining the intra-Trojan routing to the lowest routing layers,
i.e., reducing the jumping and jogging of nets. Such adjacency
is classified in image processing as “4-connected”. There-
fore, a key factor that determines the difficulty of mounting
fabrication-time attacks is the difficulty of inserting additional
circuit components into a finalized IC design. We rank this
difficulty in increasing order as follows.

1) Trivial: the Trojan components fit within a single con-
tiguous group of 4-connected placement sites.

2) Difficult: the Trojan components must be split across
multiple contiguous groups of 4-connected placement
sites. The more placement site groups required, the more
difficult intra-Trojan routing becomes.

3) Not Possible: the total area required by the hardware
Trojan exceeds that of available placement sites.

Figure 4 illustrates these difficulty levels. The susceptibility
of an IC design to fabrication-time attack can therefore be

Trivial Difficult Not Possible

Trojan Components: E B B & B F

Fig. 4. Assume an attacker is attempting to insert 6 additional Trojan
components that consume a total of 9 placement sites (as shown). If inserting
these components on the Trivial placement grid (left), they can be placed
adjacent to each other to simplify intra-Trojan routing. If inserting these
components on the Difficult placement grid (middle), they must be scattered
across the grid, making intra-Trojan routing more challenging. The Not
Possible placement grid (right) does not have enough empty placement sites
to accommodate the Trojan components.

partially quantified by the size and number of contiguous open
sites on the placement grid. This is the basis for ICAS’ Trigger
Space metric.

B. Challenges of Victim/Trojan Integration

Routing the Trojan payload to the targeted security-critical
net requires the attacker to locate the nets of interest in the IC
layout. We assume the worst case: the attacker has knowledge
of all security-critical nets in the design, particularly, the nets
they are trying to extract information from or influence. An
example of such a net in the OR1200 processor [36] is the
net that holds the privilege bit. The attacker can acquire
this knowledge either through a design-phase co-conspirator
or through advanced reverse-engineering techniques [6]. No
matter how the attacker gains this information, we assume
they have it with zero additional effort.

We extend this threat to include nets that influence security-
critical nets. To increase stealth, an attacker could also trace
backwards from the targeted security-critical net, through
logic gates, to identify nets that influence the value of the
targeted security-critical net. This is called the fan-in of the
targeted net. By connecting in this way, the attacker sacrifices
controllability for stealth as their circuit modification is now
physically separated from the security-critical net. To gain
back controllability, attackers must create a more complex
(hence larger) trigger circuit—decreasing the Trigger Space
score, as well as increasing the likelihood of visual and/or
side-channel detection. This trade-off limits how many levels
back the attacker can integrate their payload.

No matter if the attacker is attacking the targeted security-
critical wire directly or indirectly, the attacker must attach to
some victim wire or route directly adjacent to it. Since an
IC layout is three-dimensional, it is possible for the attacker
to attach to any open point on the victim wire, either on
the same layer (i.e., North, South, East, West) or from an
adjacent layer (i.e., above or below). In the worst case, there
are no other nets blocking the attacker from attaching to the
targeted security-critical net or its /V-level-deep influencers. In
the best case, all attachment points are blocked by other nets.
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Fig. 5. The supervisor bit signal of the OR1200 processor SoC is the data
input to the supervisor register of the OR1200 CPU. The supervisor register
stores the privilege mode the processor is currently executing in. Changing
the value on this net changes the privilege level of the processor allowing
an attacker to execute privileged instructions. The more congested the area
around this net, the more difficult it is for a foundry-level attacker to attach
(or route in close proximity) a rogue wire to it.

To quantify the number of points along, above, and below
a targeted security-critical wire—and its N-deep fan-in—we
implement the Net Blockage metric. Figure 5 shows the open
(unblocked) integration points for the privilege net on the
OR1200 processor.

C. Challenges of Intra-Trojan Routing

The final phase of a fabrication-time attack is Intra-Trojan
routing. Intra-Trojan routing requires connecting the compo-
nents that comprise the trigger and payload portions of the
hardware Trojan together—including connecting to the inte-
gration point with the victim—to form a complete hardware
Trojan. In the worst case, the attacker is able to find a single
contiguous region to place the trigger and payload components
that is nearby the victim security-critical net. Thus, routing the
trigger and payload components will be trivial and the wire
used to inject the payload will be short. In the best case, the
attacker will have to implement their attack using many 4-
connected placement regions (i.e., low Trigger Space score)
and the only integration point on the targeted security-critical
net (i.e., high Net Blockage score) is as far away from the
open placement regions. Hence, we focus on quantifying the
difficulty of routing the payload output to open attachment
points on targeted security-critical nets (and its N-deep fan-
in). To this end, we identify two challenges of intra-Trojan
routing:

o Comply with design and fabrication rules

o Meet Trojan and payload-delivery timing requirements

1) Complying with Design Rules: For each process tech-
nology, there are many rules associated with how wires and
components must be laid out in a design. Some of these rules
are defined in the Library Exchange Format (LEF) [37] and
contained in files that are loaded by modern Computer Aided
Design (CAD) tools throughout the IC design process. There
are two types of design rules: 1) those regarding the construc-
tion of circuit components (i.e., standard cells), and 2) those

regarding routing. We classify these as component design rules
and routing design rules, respectively. As technology nodes
shrink, both rule sets are becoming increasingly complex [38].

It is vital for an attacker to comply with these design rules as
violating them risks exposure. If an attacker inserts additional
logic gates (standard cells) by making copies of existing com-
ponents in a design, they can avoid violating component design
rules involved with Trojan placement. However, to connect
a wire from the Trojan payload to security-critical target
net(s), they must perform custom Trojan routing. Therefore,
complying with routing design rules is a concern. Routing
design rules include specifications for the minimum distance
between two nets on a specific routing layer, the minimum
width of nets on a given layer, etc. Complying with these
rules becomes easier for an attacker if security-critical net(s)
are not blocked by other wires or components. The higher
the Net Blockage score, the more difficult it is to make a
connection, the more complex—and error prone—the route.

2) Meeting Timing Requirements: Every wire in an IC
has a resistance and a capacitance, making it behave like an
RC circuit, i.e., there is a time delay associated with driving
the wire high (logic 1) or low (logic 0). The longer the
wire, the more time delay there is [39]. If the security-critical
net(s) has timing constraints (e.g., setup and hold times) that
dictate when the payload signal must arrive for the attack to
be successful, the Trojan routing must meet these constraints.
Furthermore, the farther the security-critical net is from the
payload circuit, the more obstacles that must be routed around,
increasing the routing distance even further. This is the basis
for ICAS’ Route Distance metric. A natural limit for Route
Distance is dictated by the clock frequency of the victim
circuit, as most attacks must operate synchronously with their
victim.

VI. EXTENSIBLE COVERAGE ASSESSMENT FRAMEWORK

The ICAS framework is comprised of two tools, Nemo
and GDSII-Score, as shown in Figure 6. Nemo identifies
security-critical wires based on designer annotations and
circuit dataflow, while GDSII-Score assesses the defensive
coverage of a given IC layout against a set of attacks. ICAS
takes as input four sets of files: 1) gate-level netlist (generated
after all physical layout optimizations), 2) process technology
files, 3) physical layout files, and 4) set of attacks. The process
technology files include a Library Exchange Format (LEF)
file and layer map file [37], [40]. The physical layout files
include a Design Exchange Format (DEF) file and the GDSII
file of an IC layout [37], [41]. The attack files are are a list of
properties for each attack to assess coverage against: number
of transistors, security-critical wire(s) to attach to, and timing
constraints. All ICAS input files except the attack files are
either generated-by or inputs-to the back-end IC design phase,
and hence are readily available to back-end designers.

Though ICAS is extensible, our implementation includes
three security metrics that capture the challenges faced by
a foundry-level attacker looking to insert a hardware Trojan:
amount and size of open-placement regions (Trigger Space),
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quantity of viable attachment points to targeted security-
critical (and influencer) nets (Net Blockage), and the proximity
of open placement regions to targeted security-critical net(s)
(Route Distance). Together with the attack requirements, these
metrics quantify the complexity an attacker faces for each step
of inserting specific hardware Trojans into the given IC layout.
We describe the implementation of both ICAS components
below.

A. Nemo

Nemo is the first analysis tool in the ICAS framework. It
bridges the semantic gap between the human readable RTL
netlist and post-PaR netlist. Additionally, Nemo broadens the
set of “security-critical” nets by performing a fan-in analysis
of root security-critical nets. This is necessary since the inter-
connected nature of signals within a circuit design means an
adversary could influence the state of security-critical nets by
controlling a net that is a part of its fan-in. Nemo takes as input
a Verilog netlist and automatically identifies security-critical
nets in the post-PaR netlist HDL, which it outputs in the
form of a Graphviz dot file. Similar to prior work [42]-[44],
Nemo assumes that a unique signal name prefix (within the
RTL HDL) has been appended to various signals considered
“security-critical”. We make this assumption since determining
what signals are “security critical” requires contextual knowl-
edge of how the design will be used.

1) Annotating Security-Critical Signals in the RTL
Netlist: The process of uncovering and annotating security-
critical signals in the RTL netlist is Security-Critical Com-
ponent Identification (SCCI). While SCCI is an active area
of research in the hardware security community, orthogonal
to addressing the untrusted foundry problem, there are two
approaches we are aware of: manual and semi-autonomous
identification. The first, and most traditional, is manual iden-
tification. Manual identification requires a human expert to
study the design’s specification (e.g., Instruction Set Archi-
tecture in the case of a processor), and identify properties
that are critical to the security of software or other hardware

utilizing the design [30], [42]. The second, and current state-
of-the-art developed by Zhang et al. [44], is semi-autonomous
identification. Semi-autonomous identification involves two
steps. First, a program observes a variety of test-benches
exercising the design to generate a large set of possible
invariants defined over the hardware specification. Second, a
pre-trained penalized logistic regression classifier is used to
classify which invariants, or portions of the specification, are
security-critical. This method of SCCI is semi-autonomous,
as it requires the classifier model be pre-trained with either
existing published errata on previous versions of the hardware
design, or using manual identification. While we perform
manual SCCI, results reported by Zhang et al. [44] suggest
that their tool would result in a similar set of root security-
critical signals.

2) Identifying Security-Critical Signals in the PaR Netlist:
While there are existing (aforementioned) techniques for iden-
tifying and annotating security-critical components in the RTL
netlist, unfortunately, these techniques do not track security-
critical signals past the RTL design phase and do not capture
data-flow. Thus, Nemo’s core task is to bridge the semantic
gap and uncover duplicated or renamed security-critical sig-
nals in the post-PaR netlist. Fortunately, while synthesis and
layout tools do modify a netlist by duplicating and removing
signals and components (as part of optimization and meeting
performance requirements), they do not completely rename
existing signals. This makes it possible for Nemo to identify
root security-critical signals (flagged at the behavioral level)
by name at the physical level. To avoid removal of security-
critical signals, we modify synthesis and layout scripts to
essentially lock them in place. Nemo works backwards from
root security-critical signals to identify the fan-in to these
signals. The search depth is a configurable parameter of Nemo.

3) Implementation: Nemo is implemented as a back-end
target module to the open-source Icarus Verilog (IVL) [45]
Verilog compiler and simulation tool written in C++. The IVL
front-end exposes an API to allow third-parties to develop cus-
tom back-end target modules. Nemo is a custom target module
(also written in C++) designed to be loaded by IVL. Since
gate-level netlists are often described with the same HDL
that was synthesized to generate the netlist (e.g., Verilog), we
utilize the IVL front-end to interpret the Verilog representation
of the netlist and our custom back-end target module, Nemo,
to perform a breadth-first search of the post-PaR netlist. We
open-source Nemo [19] and release instructions on how to
compile and integrate Nemo with IVL.

B. GDSII-Score

GDSII-Score is the second analysis tool in the ICAS
framework. GDSII-Score is an extensible Python framework
for computing security metrics of a physical IC layout. It
takes as input the following: Nemo output, GDSII file, DEF
file, technology files (LEF and layer-map files), and attacks
description file. First, GDSII-Score loads all input files and
locates the security-critical nets within the physical layout.
Next, it computes security metrics characterizing the suscepti-



bility of an IC design to each of the input attacks. Specifically,
the three security metrics that we implement are: 1) Trigger
Space: the difficulty of implementing the hardware Trojan,
2) Net Blockage: the difficulty of Trojan/victim integration,
and 3) Route Distance: the difficulty of meeting Trojan timing
constraints. We open source the GDSII-Score framework and
our security metric implementations [20].

1) Metric 1: Trigger Space: The Trigger Space metric
estimates the challenges of Trojan placement (§V-A). It com-
putes a histogram of open 4-connected regions of all sizes
on an IC’s placement grid. The more large 4-connected open
placement regions available, the easier it is for an attacker to
locate a space to insert additional Trojan circuit components at
fabrication time. A placement site is considered to be “open” if
the site is empty, or if it is occupied by a filler cell. Filler cells,
or capacitor cells, are inserted into empty spaces during the last
phase of layout to aid fabrication. Since they are inactive, an
attacker can create empty placement sites by removing them,
without altering the functionality or timing characteristics of
the victim IC.

To compute the trigger space histogram, GDSII-Score first
constructs a bitmap representing the placement grid. Placement
sites occupied by standard cells (e.g., NAND gate transistors)
are colored while those that are open are not. Information
about the size of the placement grid and the occupancy of each
site in the grid is available in the Design Exchange Format
(DEF) file produced by commercial PaR tools. GDSII-Score
then employs a breadth-first search algorithm to enumerate the
maximum size of all 4-connected open placement regions.

2) Metric 2: Net Blockage: The Net Blockage metric
estimates the challenges of integrating the hardware Trojan’s
payload into the victim circuit (§V-B). It computes the percent
blockage around security-critical nets and their influencers.
The more congested the area surrounding security-critical nets,
the more difficult it is to attach the Trojan circuitry to these
nets. There are two types of net blockage that are calculated
for each security-critical net: same-layer and adjacent-layer.

Same-layer blockage is computed by traversing points
around the perimeter (North, South, East, West) at a gran-
ularity of g, at a specific distance, d, around the security-
critical net and determining which points lie within other
circuit components, as detailed in Figure 7a. To determine
if a specific point along the perimeter lies within the bounds
of another circuit component, we utilize the point-in-polygon
ray-casting algorithm [46]. The extension distance, d, around
the security-critical path element and the granularity of the
perimeter traversal, g, are configurable in our implementation.
However, we default to an extension distance of one wire-pitch
and a granularity of 1 database units, respectively, as defined
in the process technology’s LEF file. The IC designs used in
our evaluation are built using a 45 nm process technology, for
which 1 database units is equivalent to 0.5 nm. Additionally,
an open region is considered “blocked” if it is not wide enough
for a minimal width wire to be routed through while main-
taining the minimal amount of wire spacing required on that
metal layer, as defined in the LEF file. The percentage of the

A) Same-layer Blockage

V4

Fig. 7. A) Same-layer net blockage is computed by traversing the perimeter
of the security-critical net, with granularity g, and extension distance d, and
determining if such points lie inside another component in the layout. B)
Adjacent-layer net blockage is computed by projecting the area of the security-
critical net to the layers above and below and determining the area of the
projections that are occupied by other components.

perimeter length that is blocked by other circuit components
is considered the same-layer blockage percentage.

Adjacent-layer blockage is computed by analyzing the area
directly above and below a security-critical net, and com-
puting the total area of overlap between other components,
as detailed in Figure 7b. To calculate this overlap area we
utilize an overlapping sliding window approach. Additionally,
any un-blocked regions above or below the security-critical
net are considered “blocked” if they are not large enough
to accommodate the smallest possible via geometry allowed
on the respective via layer, as defined in the LEF file. The
percentage of the total top and bottom area that is blocked
by nearby circuit components is the adjacent-layer blockage
percentage.

The same-layer and adjacent-layer blockage percentages are
combined via a weighted average to form a comprehensive
overall net blockage percentage where 66% is based on same-
layer blockage (north, south, east, and west) and 33% is based
on adjacent-layer blockage (top and bottom). We weight the
same-layer blockage by 66%, or %, because 4 out of 6 total
sides of a wire (north, south, east, west, top, and bottom)
are on the same layer. Likewise, we weight the adjacent-layer
blockage by 33%, or 1.

Lastly, a total same-layer, adjacent-layer, and overall net
blockage metric is computed for the entire IC design. For an
IC design with n security-critical nets, the same-layer (bsame ),
adjacent-layer (bygjacent)> and overall (boyeran) net blockage
metrics are computed according to equations 1, 2, and 3,
respectively.
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TABLE I
HARDWARE TROJANS USED IN DEFENSIVE COVERAGE ASSESSMENT.
Troi # Std  # Placement Timing
ojan Cells Sites Critical?
A2 Analog [6] 2 20 X
A2 Digital [6] 91 1444 v
Privilege
Escalation [7], [17] 2 e 7
Key Leak [18] 187 2553 v

3) Metric 3: Route Distance: The Route Distance metric
combines the Net blockage and Trigger Space metrics (thus
is correlated with these metrics) to estimate the difficulty of
of meeting Trojan and attack timing constraints (§V-C). It
computes a conservative estimate, i.e., Manhattan distance, for
the minimal routing distance between open trigger placement
sites and the n least blocked integration sites on the targeted
security critical nets. It cross-references each Manhattan dis-
tance with the distribution of net lengths within the entire
IC design. Net length can impact whether or not the Trojan
circuit will meet timing constraints and function properly.
Understanding where in the distribution of net lengths the
Trojan routing falls provides insights into the ability of the
Trojan circuit to meet its timing requirements and is an
opportunity for outlier-based defenses. In summary, the more
Manhattan distances that fall within one standard deviation of
the mean net length, the easier it is to carry out an attack.

We implement the Route Distance metric as follows. First,
the Net Blockage and Trigger Space metrics are computed.
Next, the the distribution of all net-lengths within the IC layout
are computed. Then, two-dimensional Manhattan distances
between all unblocked nets (< 100% overall net blockage)
and trigger spaces are calculated. The Manhattan distance
calculated is the minimum distance between a given trigger
space and security-critical net, i.e., the minimum distance
between any placement site within the given trigger space
and any unblocked location on the targeted security-critical
net. Lastly, each Manhattan distance is reported in terms of
standard deviations away from the mean net-length in the given
IC layout.

VII. EVALUATION

We use ICAS to quantify the defensive coverage of existing
defensive layout techniques—revealing that gaps persist. First,
we analyze the effectiveness of undirected defenses [15].
Specifically, we measure the impact of varying both physical
and electrical back-end design parameters of the same IC
layout on its susceptibility to attack. Second, we analyze the
effectiveness of directed defenses [13], [16]. Specifically, we
measure the coverage of existing, placement-oriented, defen-
sive layout schemes in preventing the insertion of an attack
by the foundry. Beyond revealing gaps, our results reveal that
there is an opportunity for improving both directed and undi-
rected defenses that systematically eliminates Trojan/victim
integration points. Lastly, our evaluation also demonstrates that
ICAS is design-agnostic, works with commercial tools, and
scales to complex IC layouts.

A. Experimental Setup

We utilize three IC designs for our evaluations: ORI1200
processor SoC, AES accelerator, and DSP accelerator. The
OR1200 processor SoC is an open-source design [36] used
in previous fabrication-time attack studies [6]. The AES and
DSP accelerator designs are open-sourced under the Common
Evaluation Platform (CEP) benchmark suite [47]. The OR1200
processor SoC consists of a 5-stage pipelined OR1200 CPU
that implements the 32-bit OR1K instruction set and Wishbone
bus interface. The AES accelerator supports 128-bit key sizes.
The DSP accelerator implements a Fast Fourier Transform
(FFT) algorithm.

All designs target a 45nm Silicon-On-Insulator (SOI) pro-
cess technology. We synthesize and place-and-route all designs
with Cadence Genus (version 16.23) and Innovus (version
17.1), respectively. In our first evaluation (§VII-B) the design
constraints (clock frequency, max transition time, core den-
sity) used for both synthesis and layout are varied as noted.
However, in our second evaluation (§VII-C) the same design
constraints (100 M H z clock frequency, 100 ps max transition
time, 60% core density) were used for both synthesis and
layout to form a common baseline. All ICs are synthesized and
placed-and-routed on a server with 2.5 GH z Intel Xeon E5-
2640 CPU and 64 GB of memory running Red Hat Enterprise
Linux (version 6.9).

1) Security-critical Signals: The first tool in the ICAS
flow is Nemo. Nemo tracks security-critical signals from the
HDL level to the IC layout level. The first step is flagging
root security-critical signals at the RTL level, for each IC
design. For the OR1200 processor SoC, the supervisor bit
signal supv is flagged. We select this signal because one can
alter the state of this bit to escalate the privilege mode of
the processor [6]. For the AES accelerator, we flag all 128
key bits as security-critical. The next_out signal within the
DSP accelerator was flagged as security-critical. The next_out
signal of the DSP accelerator indicates to external hardware
when an FFT computation is ready at the output registers.
Tampering with the next_out signal allows the attacker to
hide specific outputs of the DSP accelerator. Lastly, Nemo
marks, for each design’s IC layout, all root security-critical
nets and their 2-deep fan-in as security-critical nets.

2) Hardware Trojans: Table 1 lists the hardware Trojan
designs that we use in our evaluation. The first two Trojan
designs (analog and digital variants of A2) are attacks on the
OR1200 processor and DSP accelerator ICs. With respect to
the OR1200, the A2 attacks act as a hardware foothold [7]
for a software-level privilege escalation attack. With respect
to the DSP accelerator, the A2 attacks suppress the next_out
signal (§VII-A). The Privilege Escalation Trojan targets solely
the OR1200 and the Key Leak solely the AES accelerator.

3) Build Environment: Both ICAS tools (Nemo and
GDSII-Score) were run on the same server as the synthesis
and place-and-route CAD tools. Nemo and Icarus Verilog
were compiled from source using GCC (version 4.4.7). For
increased performance, GDSII-Score was executed using the
PyPy Python interpreter with JIT compiler (version 4.0.1).
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B. Undirected Defense Coverage

As detailed in §IV-A, a defensive strategy for protecting an
IC layout from foundry-level attackers is to exploit physical
layout parameters (e.g., core density, clock frequency, and
max transition time) offered by commercial CAD tools to
increase congestion—hopefully around security-critical wires.
The tradeoff is that while this is a low cost defense in that
CAD tools already expose such knobs, the entire design is
impacted and there is no guarantee that security-critical wires
will be protected. We use ICAS and its three security metrics to
quantify the effectiveness of such undirected approaches [15].

To uncover the impact of each parameter, we start by gen-
erating 60 different physical layouts of the OR1200 processor
design by varying:

1) Target Core Density (%): 50, 70, 90

2) Clock Frequency (M H z): 100, 200, 500, 1000

3) Max Transition Time (ps): 100, 150, 200, 250, 300

Target core density is a measure of how congested the place-
ment grid is. Typically, designers select die dimensions that
achieve ~60-70% placement density to allow space for rout-
ing [6]. Target clock frequency is the desired speed at which
the circuitry should perform. Typically, designers select the
clock frequency based on performance goals. Max transition
time is the longest time required for the driving pin of a net
to change logical values. Typically, designers choose a value
for max transition time based upon power consumption and
combinational logic delay constraints.

For each of the 60 layout variations we compute ICAS
metrics. Figures 8, 9, and 10 provide a visual representation for
each metric. Overlaid on Figure 10 are the number of unique
attack (color-coded) implementations for each Trojan (Tab. I)
at six parameter configurations. Across the 60 IC layouts, the
time it took ICAS to complete its analyses ranged from 38
seconds to 18 minutes. On average, this translates to less
than 10% of the combined synthesize and place-and-route run-
times. These run-time results demonstrate the deployability
of ICAS as a back-end design analysis tool. Overall, our

evaluation indicates that while some of these layout parameters
do increase attacker complexity, none are sufficient on their
own. We break down the results metric-by-metric.

1) Trigger Space Analysis: Figure 8 shows the distribu-
tions of open trigger spaces across 15 unique OR1200 layouts.
We vary target core density and max transition time parameters
across layouts, while we fix the target clock frequency at
1GHz. A trigger space is defined as a contiguous region
of open placement sites on the device layer placement grid
and is measured by number of contiguous ‘“4-connected”
placement sites. Each box represents the middle 50%, or
interquartile range (IQR), of open trigger space sizes for a
given IC layout. The dots represent individual data points
within and outside the IQR. Our empirical results affirm prior
notions [13], [15], [16] that increasing the target core density
of an IC layout results in fewer large open spaces to insert
hardware Trojans. Additionally our results indicate that at
lower densities, decreasing the max transition time constraint
decreases the median trigger space size. Similar trends occur
at lower clock frequencies. While results show that modulating
target core density is effective, observe that even in the best
case, large trigger spaces remain.

From our Trigger Space analysis, we conclude future undi-
rected defenses should modulate layout parameters that both 1)
shrink the trigger space IQR, and 2) shift the median towards
one. In doing so, defenders: 1) minimize the variation in sizes
of contiguous open-spaces available to the attacker—therefore
limiting their Trojan design (size) options, and 2) force the
attacker to have to distribute Trojan components across the
die making Trojan logic placement and intra-Trojan routing
more challenging.

2) Net Blockage Analysis: Figure 9 shows the Net Block-
age metric (Eq. 3) computed across 20 unique OR1200 lay-
outs. We fix the target density at 50% across all layouts,
while the target clock frequency and max transition time
are varied (as listed above). The results show that at lower
clock frequencies a smaller max transition time parameter
corresponds to increased Net Blockage. This corresponds to



©o
o

'\ Clock (MHz)
e 100
200

@
o o

L7

2 \ e 500
[}

g 60 \ e 1000
g

¥ 50

)

w 40

]

2 30

N
=

10

100 150 200 250 300
Max Transition (ps)

Fig. 9. Overall Net Blockage results computed across 20 different OR1200
processor IC layouts. A target density of 50% was used for all layouts, while
target clock frequency and max transition time parameters were varied.

less open Trojan/victim integration points available to the
attacker. However, as clock speed increases, the correlation
between max transition time and overall Net Blockage dete-
riorates. Intuitively, smaller max transition times should lead
to smaller average net-lengths within the design, as transition
time is a function of the capacitive load on the net’s driving
pin [39]. Shorter net-lengths result in more routing congestion
as components cannot be spread-out across the die. However,
capacitive load (on a driving pin) is inversely proportional to
frequency, thus at higher clock frequencies the max-transition
time constraint is more easily satisfied, and altering it has less
effect on the Net Blockage. Given these results, the effec-
tiveness of modulating transition time is context dependent
and—even in the best case—open integration points remain.

From our Net Blockage analysis, we conclude future undi-
rected defenses should modulate layout parameters that both 1)
shrink overall security-critical wire lengths, and 2) maximize
routing congestion in the vicinity of security-critical wires.
In doing so, defenders minimize the Victim/Trojan integration
attack surface.

3) Route Distance Analysis: Figure 10 shows the Route
Distances across six various OR1200 layouts in the form of
heatmaps that capture the trade space between layout parame-
ters. Core density and max transition times were varied across
the layouts (indicated in the labels), while clock frequency was
held constant at 100 M Hz. Each heatmap describes several
(column-wise) histograms of Route Distances in terms of
standard deviations from the mean net length observed in that
particular IC layout (y-axis). The Route Distances reported
are those between any unblocked security-critical nets, and
trigger spaces large enough to hold an attack of a given
size range (x-axis). That is, the color intensities within in a
given heatmap column indicate the percentage of (security-
critical-net, trigger-space) pairs in that column that are within a
range of distance apart. Additionally, overlaid on each heatmap
are rectangles indicating the region of the heatmap where a
given attack (Tab. I) can be implemented, and the number
of possible attack configurations, (security-critical-net, trigger-
space) pairs, that can be exploited.

If timing is critical to the operation of an attacker’s desired
Trojan, (critical-net, trigger-space) pairs with routing distances
significantly greater than the average net length in the IC
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Fig. 10. Heatmaps of routing distances across six unique IC layouts of the
OR1200 processor. Core density and max transition times are labeled. Each
heatmap is to be read column-wise, where each column is a histogram, i.e, the
color intensity within a heatmap column indicates the percentage of (critical-
net, trigger-space) pairs that are within a (y-axis) distance apart. Overlaid are
rectangles, indicating regions on each heatmap a given attack can exploit, and
numbers indicating the number of unique attack implementations.

layout are less likely to be viable candidates for constructing
hardware Trojans. IC layouts with few desirable (critical-
net, trigger-space) pairs are much more time-consuming to
attack. Namely, the IC layouts with heatmaps that indicate
a higher percentages of far-apart (critical-net, trigger-space)
pairs, where the trigger spaces are small, are most secure.
From Figure 10, we conclude that at high density, max
transition time has little affect on IC layout security; while
at lower densities, lower max transition time designs are more
secure. Similar trends exist across other layout parameters, as
shown in Figures 13-15 in Appendix A.

From our Route Distance analysis, we conclude future
undirected defenses should modulate layout parameters that
maximimze the distance between security critical wires and
open trigger spaces. In doing so, defenders: 1) maximize
intra-Trojan routing difficulty, and 2) restrict attackers from
implanting timing-critical Trojans.

4) Cost of Varying Layout Parameters: The results indi-
cate that increasing core density is effective, but incomplete,
and increasing clock frequency and decreasing max transition
time is marginally effective and incomplete. While tuning
these parameters is low cost to the designer, there is a cost
to the design in terms of complexity and power requirements.
We elucidate by discussing how varying each design parameter
(density, clock frequency, and max transition time) impacts
non-security characteristics of a circuit design.

While increasing core density to 90% makes placing-and-
routing a Trojan more difficult, it also makes placing-and-
routing the rest of the design more challenging. Specifically, it
can become nearly impossible to meet timing closure for the
entire design if there is not enough space within the core area
to re-size cells and/or add additional buffer cells. Depending



on performance and security requirements, a layout engineer
may choose to relax timing constraints in order to achieve
a higher core density. Alternatively, a layout engineer may
attempt to surround security-critical nets with areas of high
densities, while maintaining a lower overall core density, as
previously suggested [13], [16].

Decreasing the maximum transition time and increasing
the clock speed of an entire circuit design makes it more
difficult to place-and-route a functional Trojan that meets
timing constraints, but also directly impacts the performance
characteristics of the circuit. Additionally, it is important to
note that max transition time is related to the clock fre-
quency, so varying one without the other changes performance
tolerances. While increasing the performance of the design
might increase security, it comes at the cost of increasing
power consumption. Depending on the power-consumption
requirements of the design, it may be possible for a designer
to over-constrain these parameters for added security.

C. Directed Defense Coverage

As an alternative to probabilistically adding impediments
to the attacker inserting a hardware Trojan, recent works
proposes a directed approach. As detailed in §1V-B, placement-
centric directed defenses [13], [16] attempt to prevent the
attacker from implementing their Trojan by occupying all
open placement sites with tamper-evident filler cells. The
limitation with such defenses is that it is infeasible to fill all
open placement sites with tamper-evident logic [16]. Thus, the
defenses focus their filling near security-critical logic, leaving
gaps near the periphery of the IC layout. Whether these open
placement sites near the periphery are sufficient to implement
an attack is an open question.

The goal of this evaluation is to determine not only if
it is still possible for a foundry-level attacker to insert a
hardware Trojan, given placement-centric defenses, but to
quantify the number of viable implementations available to
the attacker—to act as a surrogate for attacker complexity.
For the evaluation, We use our three IC designs (OR1200
processor SoC, AES accelerator, and DSP accelerator). For
each design, we create two IC layouts: (1) unprotected and
(2) protected. For the protected IC layout, we use the latest
placement-centric defense [13]; using the identified security-
critical wires (§VII-A) to direct the defense. We lay out all
IC designs using these parameters: target clock frequency of
100 M Hz, max transition time of 100 ps, and a target core
density of 60%.

We then use ICAS to asses the defensive coverage of each of
the six IC layouts. This analysis has two goals: (1) determine
whether the IC is vulnerable to attack and (2) understand the
impact of applying the defense. We answer both questions
in an attack-centric manner using the hardware Trojans in
Table I to asses defensive coverage against. For each attack/IC
layout combination we plot the number of (security-critical-
net, trigger-space) pairs that could be used in implementing
each Trojan. A (security-critical-net, trigger-space) pair is
considered a viable candidate for implementing a Trojan if:
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Fig. 11. Routing Distance heatmaps across three IC designs, with and without
the placement-centric defense described in [13], [16]. Heatmaps should be
interpreted similar to Fig. 10.

1) the trigger space size is at least as large as the minimum
number of placement sites required to implement the
desired hardware Trojan design

2) the security-critical net is less than 100% blocked

3) if the hardware Trojan is “Timing-Critical”, i.e., it must
function at the design’s core operating frequency, then
the distance between the trigger space and open inte-
gration point on the security-critical net must be < 3
standard deviations from average net length; otherwise,
any distance is allowed.?

Figure 11 shows the defensive coverage for each IC design.
Overlaid on each heatmap are rectangles (and numbers) indi-
cating unique possible attack implementations. These results
show that existing placement-centric defenses are effective at
reducing an IC’s fabrication-time attack surface, compared to
no defense—but gaps persist. Given that filling placement sites
with tamper-evident logic is already maximized, these results
point to systematically adding congestion around security-
critical wires as a means to close all remaining defensive gaps;
i.e., a directed version with similar effect to existing undirected
defenses.

VIII. DISCUSSION

ICAS is the first tool to provide insights into the security of
physical IC layouts. It is extensible across many dimensions
including CAD tools, process technologies, security metrics,
and fabrication-time attacks and defenses. To demonstrate
ICAS’ capabilities we implemented three security metrics (net
blockage, trigger space, and routing distance) using it. The
focus of this paper is using these metrics to estimate the
coverage of existing untrusted foundry defenses, which show

2Three standard deviations from the average net length is the threshold
for Trojan-to-integration-point routing without violating timing constraints,
because it accounts for 99.7% of the designs’ wires—outliers tend to be power
wires. For an exact calculation, it is possible to extract parasitics for a target
Trojan’s route to determine if it violates timing constraints.



that IC designs are still vulnerable to attack. We envision uses
for ICAS beyond this, as an integral part of the IC design
process using commercial tools.

1) ICAS-Driven Defensive Layout: ICAS provides an
added notion of security to the IC layout (place-and-route)
process to enable researchers to explore countermeasures
against fabrication-time attacks. To the best of our knowledge,
the existing targeted defensive IC layout techniques [13], [15],
[16] are entirely placement-centric, i.e., filling unused space
on the device layer with functional logic cells. While ICAS
is capable of evaluating placement-centric defensive layout
techniques, its security-insights also asses routing-centric de-
fensive layout techniques. For example, layout engineers can
leverage ICAS to create high degrees of routing congestivity
in close proximity to security-critical nets. ICAS’ security
metrics enable IC layout designers to optimize the security
of both the placement and routing of their designs.

2) Constrained Security Metrics: In its primary state,
ICAS focuses on computing metrics that reason about the
spatial resources required to implant hardware Trojans in
IC layouts. While our metrics are unconstrained and thus
conservative, it is trivial to extend, and constrain, ICAS metrics
to account for other layout resources that may impact an
attacker’s decision process. For example, even with a plethora
of spatial resources available to insert Trojan components,
doing so in certain areas of the chip may impact local power
consumption enough to disrupt normal operating behavior.
Alternatively, inserting a hardware Trojan nearby un-shielded,
fast toggling, interconnects may negatively impact the Tro-
jan’s signal integrity, rendering it benign. We recognize it is
impractical to consider all possible constraints, and hence we
design ICAS to be extensible.

3) Extensibility of Security Metrics: GDSII-Score is the
ICAS tool that computes security metrics from an IC layout.
It loads several files describing the IC layout to instantiate
a single Python class (called “Layout”) that contains query-
able data structures containing a polygon representation of all
components in the layout. Additionally, GDSII-Score contains
several subroutines that compute spatial relationships between
polygon objects and points within the layout. From these
data structures and the provided subroutines, it is trivial to
integrate additional metrics into GDSII-Score. To facilitate
additional metrics, we open-source GDSII-Score [20], and our
three example metrics that demonstrate how to query the main
“Layout” data structure.

4) Extensibility of CAD Tools: Almost all steps of the
IC design process utilize CAD tools. ICAS integrates into
a commercial IC design process after placement-and-routing
(Figure 1). While ICAS is validated with IC layouts generated
by Cadence tools, integrating ICAS with other vendors’ CAD
tools does not require any additional effort due to the common
process technology (LEF) and GDSII specifications used by
ICAS.

5) Extensibility of Process Technologies: We test ICAS
using IC layouts built with a 45nm SOI process technology;
however, ICAS is agnostic of process technology. The LEF

Additive (Layout-Level) Trojans

Design Type?

Standalone Integrated

Add Transistors?

Add Transistors?

Parasitic Wire Parasitic Circuit Short-Circuit Functional
RD TS, RD NB, RD TS, NB, RD

TS = Trigger Space; NB = Net Blockage; RD = Route Distance

Fig. 12. We assume that, at the very least, layout-level additive Trojans require
adding rogue wires to the layout’. Whether the Trojan design is integrated
(requires connecting to a host circuit) or standalone, or requires additional
transistors, the difficulty of inserting it into a victim IC layout can be captured
by our three metrics: 1) Trigger Space (TS), 2) Net Blockage (NB), and 3)
Route Distance (RD).

and layer map files (§VI) are the only ICAS input files that
are dependent on the process technology. A LEF file describes
the geometries and characteristics of each standard cell in
the cell library, and the layer map file describes the layer
name-to-number mappings, respectively, for a given process
technology. ICAS adapts to different process technologies
provided that all input files adhere to their specifications [37],
[40].

6) Limitations: The goal of ICAS is to estimate the sus-
ceptibility of circuit layouts to additive hardware Trojans,
thus there are limitations. First, as implemented, ICAS is not
capable of estimating the susceptibility of a circuit layout
to subtractive or substitution Trojans. We are unaware of
any stealthy and controllable subtractive hardware Trojans,
but should researchers develop such an attack, metrics will
need to be added to ICAS to enable detection. Dopant-level
Trojans are the closest example of substitution Trojans [4],
[5]. Though their non-existent footprints make them difficult to
detect via side channels, post-fabrication imaging techniques
that can identify such Trojans have been proposed [48]. Lastly,
our implemented metrics do not capture the threat of via-
only additive Trojans. A via-only attack shorts two vertically-
adjacent wires for the purpose of leaking information. We
feel the possibility of such pernicious attacks in the future
highlights the importance of ICAS’s extensibility.

7) Justification for Metrics: As a first step in estimating
risk, we chose to implement three metrics that capture our
decade worth of experience in implementing hardware Trojans:
net blockage, trigger space, and route distance. These metrics
capture the challenges we faced when inserting various types
of additive Trojans into circuit layouts, i.e., Trojan logic
placement, victim/Trojan integration, intra-Trojan routing. To
facilitate mapping our metrics to specific Trojans we provide
a taxonomy in Figure 12. To summarize the taxonomy: if a
Trojan needs to attach to a victim wire (i.e., an integrated
Trojan), our Net Blockage metric provides coverage; if the
Trojan requires transistors to implement logic, our Trigger

3Via-only attacks are outside the scope of our metrics as they are currently
implemented (§ VIII-6).



Space metric provides coverage; and if the Trojan needs to be
near the victim wire (for capacitive coupling in the case of a
standalone Trojan or to meet timing requirements in the case
of a integrated Trojan), our Route Distance metric provides
coverage. Additionally, as our evaluation with existing Trojans
and real IC layouts shows, our metrics are both Trojan- and
IC-layout- sensitive. Lastly, the metrics are hardware design
agnostic. While we do not suggest that the implemented
metrics are all-encompassing, our results suggest that these
metrics are a viable first step towards estimating a circuit’s
susceptibility to additive hardware Trojans.

IX. RELATED WORK

Fabrication-time attacks and defenses have been extensively
researched. Attacks have ranged in both size and triggering-
complexity [4]-[6], [28], [29]. Defenses against these attacks
include: side-channel analysis [9], [10], [12], [49], imag-
ing [50], [51], on-chip sensors [52], [53], and preventive
measures [13]-[16]. The most pertinent attacks and defenses
are highlighted below.

A. Untrusted-foundry Attacks

The first foundry-level attack was conceived by Lin et
al. [28]. This hardware Trojan was comprised of approxi-
mately 100 additional logic gates and designed to covertly
leak the keys of an AES cryptographic accelerator using
spread spectrum communication to modulate information over
a power side channel. While the authors only demonstrated this
attack on an FPGA, they are the first to mention the possibility
of this type of Trojan circuit being implanted at an untrusted
foundry.

The A2 attack [6] is the most recent fabrication-time attack.
A2’s analog triggering mechanism is stealthy, controllable, and
small. It prevents the Trojan from being exposed during post-
fabrication testing, or unintentionally through common usage.
The attack requires only two additional standard cells and
evades every known detection mechanism to date. ICAS quan-
tifies the defensive coverage to these and other fabrication-time
attacks.

B. Untrusted-foundry Defenses

Most untrusted foundry defenses rely on post-fabrication
detection schemes [9], [10], [12], [49]-[53]. ICAS aims to
guide innovation in preventive defenses against fabrication-
time attacks, for which few mechanisms currently exist [13]-
[16]. We highlight some of these preventive measures and how
ICAS could measure their effectiveness.

While preventive security-by-design was first explored at the
behavioral (RTL) level by of Jin et al. [42], Xiao et al. were the
first to demonstrate security-by-design at the layout-level with
their BISA (Built-In Self-Authentication) scheme [15]. The
undirected BISA approach attempts to eliminate all unused
space on the device layer placement grid, and create routing
congestion, by filling the device layer with interconnected
tamper-resistant fill cells. Alternatively, recognizing the im-
practicality of filling 100% of the empty placement sites in

complex circuit designs, Ba et al. take a directed approach
to filling empty placement cites [13], [16]. Specifically, they
only fill empty placement sites in close proximity to security-
critical nets.

X. CONCLUSION

ICAS is an extensible framework that we use to expose
and quantify gaps in existing defenses to the threat posed by
an untrusted foundry. ICAS has two high-level components:
Nemo, a tool that bridges the semantic gap across IC design
processes by tracking security-critical signals across all stages
of hardware development and GDSII-Score, a tool that esti-
mates the difficulty a foundry-level attacker faces in attacking
security-critical logic. Experiments with over 60 IC layouts
across three open-source hardware cores and four foundry-
level hardware Trojans reveal that all current defenses leave
the IC design vulnerable to attack—and some are totally
ineffective. These results show the value of a tool like ICAS
that can help designers identify and address defensive gaps.

From a high level, ICAS is momentus in that it makes
security a first-class concern during IC layout (in addition to
power, area, and performance): ICAS allows IC designers to
measure the security implications of tool settings and design
decisions. ICAS fits well with existing IC design tools and
flows, allowing them to consider security. ICAS is a critical
measurement tool that enables the systematic development of
future physical-level defenses against the threat of an untrusted
foundry.
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APPENDIX A
ROUTE DISTANCES OF OR1200 LAYOUTS
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Fig. 13. Route Distance Metric for OR1200 at 50% Density). A target density of 50% was held across each layout, while target clock frequency and max
transition time parameters were varied from 100 MHz to 1000 MHz and 100 ps to 300 ps respectively. Each heatmap is intended to be read column-wise, where
each column is a histogram. The color intensity within a heatmap column indicates the percentage of (critical-net, trigger-space) pairs, within that column,
that are within a range of distance away. The y-axis reports the distance in terms of standard deviations from the overall mean net-length in each design. The
x-axis reports the trigger space sizes in number of contiguous placement sites. Designs with smaller trigger-spaces and long route distances are more resistant
to fabrication-time attacks. Namely, a heatmap column that is completely dark indicates no (critical-net, trigger-space) pairs, or attack points, and a column
that is completely dark except for the top-most cell is the second most secure.
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Fig. 15. Route Distance Metric for OR1200 at 90% Density. Same as Fig. 13, except a target density of 90% was held across each layout.



