
RingRAM: A Unified Hardware Security Primitive for IoT
Devices that Gets Better with Age

Michael Moukarzel
mamoukar@vt.edu

Virginia Tech
Blacksburg, Virginia, USA

Matthew Hicks
mdhicks2@vt.edu

Virginia Tech
Blacksburg, Virginia, USA

ABSTRACT
As security grows in importance, system designers turn to hardware
support for security. Hardware’s unique properties enable function-
ality and performance levels not available with software alone. One
unique property of hardware is non-determinism. Unlike software,
which is inherently deterministic (e.g., the same inputs produce
the same outputs), hardware encompasses an abundance of non-
determinism; non-determinism born out of manufacturing and opera-
tional chaos. While hardware designers focus on hiding the effects of
such chaos behind voltage and clock frequency guard bands, security
practitioners embrace the chaos as a source of randomness.

We propose a single hardware security primitive composed of
basic circuit elements that harnesses both manufacturing and opera-
tional chaos to serve as the foundation for both a true random-number
generator and a physical unclonable function suitable for deploy-
ment in resource-constrained Internet-of-Things (IoT) devices. Our
primitive RingRAM leverages the observation that, while existing
hardware security primitives have limitations that prevent deploy-
ment, they can be merged to form a hardware security primitive that
has all of the benefits, but none of the drawbacks. We show how
RingRAM’s reliance on simple circuit elements enables universal
implementation using discrete components, on an FPGA, and as
an ASIC. We then design RingRAM tuning knobs that allow de-
signers to increase entropy, decrease noise, and eliminate off-chip
post-processing. We validate RingRAM, showing that it serves as
a superior true random-number generator and physical unclonable
function—robust against aging and thermal attacks. Finally, to show
how RingRAM increases IoT system security, we provide two Linux-
based use cases on top of a RISC-V System-on-Chip.

ACM Reference Format:
Michael Moukarzel and Matthew Hicks. 2021. RingRAM: A Unified Hard-
ware Security Primitive for IoT Devices that Gets Better with Age. In An-
nual Computer Security Applications Conference (ACSAC ’21), December
6–10, 2021, Virtual Event, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3485832.3485905

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485905

1 INTRODUCTION
Random numbers are the foundation for the secure systems that soci-
ety depends on. Since all cryptographic algorithms are deterministic
by design, when given the same inputs, they produce the same out-
puts. Thus, to prevent attackers from being able to uncover/change
secrets by replaying a victim’s inputs, secure systems employ a ran-
dom input (e.g., a key) to force attackers to guess one of the inputs.
With sufficient randomness, the search space of the attacker is so
large that the attacker’s expected time to guessing correctly is longer
than the Earth’s lifespan, making an attack infeasible.

Broadly, modern cryptosystems employ two classes of random
numbers: long-life keys that are pre-shared and ephemeral keys that
are generated at run time. While both key classes are useful for
providing confidentiality and integrity guarantees, pre-shared keys
have an authentication component: having access to the key implies
that you are a trusted entity; the fewer entities that have access to
the same pre-shared key, the stronger notion of authentication pro-
vided. For symmetric cryptography, device-specific keys provide
the strongest form of authentication, where only the device and
its producer know the key. Historically, device keys were assigned
pre-deployment and stored in a tamper-proof, non-volatile, memory
inside the chip. Recent advances in harnessing analog-domain hard-
ware chaos that results in non-deterministic cross-chip variation have
replaced key storage with key generation via a Physical Unclonable
Function (PUF). Ephemeral keys are generated using key agreement
protocols, which rely on spontaneous generation of random numbers
via a True Random Number Generator (TRNG). TRNGs also har-
ness analog-domain chaos, but extract non-deterministic variation
due to operational chaos to generate key material.

Internet-of-Things (IoT) devices are increasingly using PUFs and
TRNGs. IoT devices are ubiquitous and often exposed to untrusted
individuals, meaning they require the device identification provided
by a PUF. At the same time, many medical, defense, safety-critical,
and infrastructure systems make heavy use of IoT devices, meaning
they are security-critical and require keys provided by a TRNG.
But, by their nature, IoT devices must be small, cheap, and low
power; such power and area constraints demand a unified hardware
security primitive to fulfill both PUF and TRNG demands. An added
benefit of a unified hardware security primitive is tamper evidence:
validating PUF integrity also validates TRNG integrity.

Given the importance of PUFs and TRNGs to current IoT systems
and the smart dust of the future, researchers attempt to provide a
solution. The two most common unified hardware security primitives
are based on Ring Oscillators (ROs) [33] and Static Random-Access
Memory (SRAM) [21]. ROs send a signal around a ring of logic
gates and using jitter as a source of chaos, while SRAM leverages a
hardware-level race condition between two cross-coupled inverters

https://doi.org/10.1145/3485832.3485905
https://doi.org/10.1145/3485832.3485905

as a source of chaos. As, detailed in §2, there are many tradeoffs
between RO- and SRAM-based PUFs and TRNGs, but in practice,
SRAM-based hardware security primitives are more common [15,
22]. Unfortunately, SRAM’s power-cycle-limited supply of entropy
makes it ill-suited for use in a TRNG and its dual-use nature, while a
way to reduce hardware overhead, is an attack vector [27, 30, 35, 47].
Thus, there is no unified hardware security primitive capable of
generating high rate and unbounded entropy, while minimizing
hardware area and power, and is robust against attack.

We observe that while it may seem that ROs and SRAM are
completely different, they represent extreme design points in a con-
tinuum of hardware security primitive designs. We leverage this in-
sight to create RingRAM, a new unified hardware security prim-
itive that combines the best aspects and avoids the drawbacks
of both ROs and SRAM. RingRAM exposes intermediate design
points on the continuum, allowing system designers to balance PUF
and TRNG utility.

RingRAM is composed of two cross-coupled, equal-length chains
of an odd number of inverting gates (§3). When disabled, the two
chains are effectively disconnected from each other. When enabled,
the two chains race to send their value to the opposing chain; the
chain that is relatively faster, determines the value for the cell.
Relatively-different-speed chains are usable for PUFs, where relatively-
similar-speed chains are usable for TRNGs (§8). The longer the
chains, the more relatively similar the propagation delay through the
chains, allowing a designer to control the PUF/TRNG composition
of a set of RingRAM cells (§4).

To quantify the efficacy of RingRAM as a foundation for PUFs
and TRNGs and to compare against RO- and SRAM-based prim-
itives, we implement RingRAM on a Xilinx Artix-7 FPGA (§7).
We develop three RingRAM implementations: FPGA, ASIC, and
discrete. We evaluate 1600 unique RingRAM cell sites, across 5
devices, over a 40° C range. Experiments validate that RingRAM
provides utility as the foundation for both PUFs and TRNGs and
it combines the best aspects of RO- and SRAM-based primitives:
RingRAM provides unbounded entropy like ROs, has low hard-
ware area cost like SRAM, has a higher throughput of entropy
than either, and is more secure than either (§8). To expose the
middle of the PUF/TRNG continuum, we show how designers can
extend RingRAM’s design to create implementations that system-
atically target mid-points on the continuum (§4). We also show
how small amounts of hardware can be added to reduce software’s
post-processing burden—clarifying the PUF and TRNG abstraction
provided by hardware (§5) and to increase RingRAM’s performance
and security (§6). Lastly, we show how system designers can incor-
porate RingRAM into a System-on-Chip to improve overall system
security without changing existing software or increasing software’s
run time (§10).

RingRAM makes the following contributions:
• RingRAM is a simple, auditable, high-performance, unified

hardware security primitive for IoT devices (§3). We quanti-
tatively validate RingRAM’s suitability as the foundation for
both PUF and TRNG uses as well as its overheads (§8).

• RingRAM exposes a tuning knob to designers that provides
control over where in the continuum between PUF-oriented
and TRNG-oriented a RingRAM implementation lies (§4).

• We expose knobs that reduce PUF noise and increase TRNG
entropy rate (§5) as well as leverage device aging to increase
both PUF and TRNG utility over time (§6).

• We implement RingRAM in a RISC-V-based SoC that runs
Linux. Using this prototype, we demonstrate how RingRAM
increases system security—without performance degradation—
using openssl benchmarks (§10).

2 BACKGROUND
Physical Unclonable Functions (PUFs) and True Random Number
Generators (TRNGs) are essential building blocks for the crypto-
graphic systems that we all depend on. PUFs provide a means for
strong device authentication and serve as a seed for key generation.
TRNGs provide the ephemeral keys and nonces required to maintain
data confidentiality and integrity. While security depends on PUFs
and TRNGs, PUFs and TRNGs in-turn depend on non-determinism;
note that this is different from a software notion of non-determinism,
as even the most complex software is inherently deterministic. True
non-determinism comes from chaos inherent to natural processes; in
this case, variation in hardware’s analog-domain. While hardware
designers employ design practices and operational guard bands to
mask analog-domain variation (e.g., voltage fluctuations) to create
hardware that provides deterministic execution, PUFs and TRNGs
must expose, enhance, and extract analog-domain variation.

The challenge is that not all variation is helpful for security. There
are two types of variation: systematic and chaotic. Systematic
variation is predictable, hence not useful, whereas chaos-induced
variation is where the randomness lies. Thus, a hardware security
primitive must eliminate systematic variation and capture chaotic
variation. In addition, PUFs and TRNGs require mutually-exclusive
types of variation. In this section, we provide an overview of PUFs
and TRNGs, along with a description the most popular unified hard-
ware security primitives that provide PUF and TRNG bits.

2.1 PUF
Strong device authentication (either post-deployment or while travers-
ing the supply chain) and key generation for cryptographic protocols
require a device-specific, on-chip key. This device-specific key must
be robust against an attacker with physical access to the device, pre-
venting them from exfiltrating it or duplicating it in another device.
The traditional approach is to store the key in on-chip non-volatile
memory (e.g., in Electrically-Erasable Programmable Read-Only
Memory (EEPROM) or battery-backed Static Random-Access Mem-
ory (SRAM)) before deployment. Protecting against attackers with
physical access requires tamper protection mechanisms, which in-
creases complexity, cost, area, and power.

PUFs are a simple, low-cost, and naturally tamper resistant alter-
native to key storage: instead of assigning a key to a device, PUFs
embody key derivation. PUFs derive a device-specific key (i.e.,
a fingerprint) by harnessing manufacturing-time chaos that re-
sults in analog-domain hardware variation within and across
chips. The goal is to find sources of variation that result in reliable—
but unpredictable—device differences that persist across its lifetime.
Because the key depends on physical properties of the chip, it is
naturally tamper-evident as physical modification changes the de-
rived key. This obviates the need for the burdensome designed-in

2

tamper evidence required by key storage approaches. Thus, the
ideal primitive for a PUF enhances within-chip variation, di-
minishes wafer-scale variation, is tamper evident, and produces
low-noise fingerprints that are stable with device use.

2.2 TRNG
The security of the cryptographic protocols that society depends on
rests on a small amount of non-predictability, conventionally called
a key. Random Number Generators (RNGs) provide a stream of bits
for use as key material. There are two types of RNGs, depending
on the predictability of the produced bit stream: Pseudo-Random
Number Generators (PRNGs) and True-Random Number Generators
(TRNGs). PRNGs produce a sequence of bits that is determinis-
tically derived from a seed value using a pseudorandom function
(e.g., a cryptographic hash). Being calculable from a seed means that
PRNGs have high throughput, but only the seed provides security;
once the seed is known, all uses of the resulting PRNG output stream
are compromised—including other keys/seeds derived from that se-
quence. In contrast, TRNGs produce a wholly non-deterministic
sequence where every value is independent of previous values. Thus,
every bit of the TRNG provides security.

While TRNGs are ideal from a security perspective, developers
tend to avoid them due to their low throughput. TRNGs achieve
output independence by accumulating operational chaos,1 then
distilling it down such that all possible N-bit output values have
a probability of 1/2𝑁 of occurring. Accumulating N-bits of chaos
requires collecting much more than N-bits of analog-domain mea-
surements, because only a small fraction of each measurement is
chaotic—i.e., chaos is in the operational noise. The proportion of
a measurement influenced by chaos is called entropy.2 Thus, to
create N-bits of true randomness, a TRNG must collect 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ∗𝑁 -
bits of measurements and reduce that down to an N-bit output.3

Additionally, the measurement rate is also limited for many chaos
sources, further reducing TRNG throughput.4 The ideal primitive
for a TRNG maintains integrity, while providing an unbounded
supply of entropy at a sufficient rate.

2.3 Unified Hardware Security Primitive
Though there are many different types of PUF and TRNG designs,
they tend to exploit similar hardware effects that are impacted by
both manufacturing and operational chaos. Thus, the ideal solution
of a single hardware security primitive that serves as the foundation
for both PUFs and TRNGs is possible; we refer to this as a unified
hardware security primitive. The two most popular unified hardware
security primitives employ Ring Oscillators (ROs) [33] and Static
Random-Access Memory (SRAM) [21]. At their lowest level, both
ROs and SRAM use the basic inverter gate to sample chaos.

1Exposed sources of operational chaos are limited because they necessitate interaction
with the environment, users, or require ground truth. The deeply-deployed nature of
many IoT systems further eliminates sources of chaos.
2§8.2 covers entropy estimation algorithms in detail.
3A popular way to distil out the chaotic component of a largely deterministic set of
measurements is to pass the accumulated measurements as the message to a compression
function, taking the N-bit output as the TRNG response.
4For example, it takes AMD Ryzen processors 2500 clock cycles to provide 64-bits of
true randomness [11].

2.3.1 Ring Oscillators (ROs). ROs consist of an odd number of
inverter gates connected together in a feedback loop. When active, it
produces a value transition wave (i.e., 0 to 1 or 1 to 0 edge) that trav-
els around the loop. The result is roughly equivalent to a clock signal
with a 50% duty cycle, the frequency of which is dictated by the time
it takes to circumnavigate the loop twice. Circumnavigation time is a
combination of operational variation (e.g., voltage and temperature
fluctuations) and manufacturing variation (e.g., threshold voltage).
While manufacturing variation’s effect on frequency is fixed for a
given chip, operational variation consists of both systematic vari-
ation (e.g., 20°C vs. 50°C operation) and chaotic variation (e.g.,
thermal noise). As discussed in §8, ROs are better suited as a TRNG
than a PUF due to their increased sensitivity to operational chaos;
this sensitivity makes ROs vulnerable to environmental attacks.

2.3.2 SRAM. At the heart of an SRAM cell is a pair of cross-
coupled inverter gates. This cross-coupling creates a self-reinforcing
bi-stable feedback loop that enables SRAM to maintain state with-
out the need for the refresh operations of Dynamic Random-Access
Memory (DRAM). The aspect of this cross-coupling that is useful
for security comes when SRAM goes from un-powered to powered.
When SRAM is un-powered, both inverters output 0, because they
are off. When power is applied, the supply voltage rises quickly—
but not instantaneously—due to power supply current limits and
parasitic capacitance. Thus, during supply voltage rise, there is a
point where one inverter is active (i.e., begins to output a 1), while
the other remains off. The inverter that activates first is determined
largely by manufacturing-time variation [46]. In cases where, due to
random chance, inverters have very similar activation voltages, the
inverter that wins the hardware race is, at least partly, determined by
operational chaos.5 Because of this, the power-on value of SRAM
cells captures both manufacturing and operational chaos. As dis-
cussed in §8, SRAM is better suited as a PUF than a TRNG due to
its increased sensitivity to manufacturing chaos; this sensitivity and
their dual-use nature makes SRAM vulnerable to aging attacks.

We combine ROs and SRAM into a new unified hardware se-
curity primitive RingRAM. RingRAM has a designer-controlled
balance between operational and manufacturing chaos that bal-
ances PUF and TRNG utility, while being immune to environ-
mental and aging attacks.

3 DESIGN
While Ring Oscillator (RO) and Static Random-Access Memory
(SRAM) security primitives seem different, we posit that they are
fundamentally similar and representative of opposite extremes on
a continuum of hardware security primitive designs. At the core
of both ROs and SRAM is a simple combinational delay loop:
ROs have long, self-inverting loops and SRAMs have short, self-
reinforcing loops. ROs’ long loops enhance operational variation
at the expense of chaotic manufacturing variation, so ROs repre-
sent the True-Random Number Generator (TRNG) extreme of the
continuum. SRAM’s compact loops enhance chaotic manufacturing
variation at the expense of operational and systematic manufacturing
variation, so SRAM represents the Physical Unclonable Function
(PUF) extreme of the continuum. The problem is that ROs and PUFs

5The compact and differential design of a SRAM cell naturally eliminates the effects of
systematic operational variation.

3

RingRAM

O1

Output

Odd number of Inverters
Step 1: Original RO

Output

Even number of Inverters
Step 2: Entropy Source

Output

Step 3: Reduce Complexity and Overhead

O2

EN1 EN2

Step 4: Unbounded Entropy

Output

EN

O1 O2

EN

Step 5: Optimize

Output

Figure 1: RingRAM design evolution.

are extreme design points, hence ill-suited for the unified hardware
security primitive required by modern IoT systems. Even worse,
both suffer critical security weaknesses.

We design a unified hardware security primitive RingRAM that
is based on the same fundamentals as ROs and SRAM, but systemat-
ically designed from the ground-up to avoid the drawbacks of both
ROs and SRAM. RingRAM exposes and exploits the region of
the hardware security primitive design space between the two
extremes. RingRAM combines the best design aspects of ROs and
SRAM to create a single, simple, primitive that has low area over-
head, provides an unbounded supply of high-rate entropy, provides
a robust device fingerprint, while addressing their security weak-
nesses. While we develop RingRAM from the ground-up, based on
first principles, for clarity here, we describe its construction starting
from a RO and iteratively modify the design to eliminate negatives.
Figure 1 shows RingRAM’s evolution.

Step 1 - Base RO: ROs provide an unbounded amount of chaos-
influenced values, controlled by an 𝐴𝑁𝐷 gate. Unfortunately, be-
cause ROs are sensitive to both systematic and chaotic operational
variation, the rate of entropy is low as the TRNG must wait for
sufficient chaotic operational variation to accumulate such that it
surpasses systematic variation. Additionally, the long chains of ROs
tend to average out chaos-induced manufacturing variation.

Step 2 - Entropy Source: In comparison to ROs, the entropy
source of SRAM is based on stabilization as opposed to noise ac-
cumulation. The hardware-level race condition created by SRAM’s
cross-coupled inverters is sensitive to both manufacturing and oper-
ational chaos, albeit much more sensitive to manufacturing chaos.
By switching to SRAM’s entropy source, there is no need to wait
for noise accumulation, increasing throughput, and because it is sen-
sitive to both sources of chaotic variation, area overhead decreases
because only one ring is required per PUF response bit.

Previous State Current State
O1 O2 Comment

EN1 EN2 EN1 EN2
- - 0 0 1 1 No Feeback
- - 0 1 1 O1 Stable 1
- - 1 0 O2 1 Stable 0
0 0 1 1 O2 O1 Race Condition
0 1 1 1 1 O1 Stable 1
1 0 1 1 O2 1 Stable 0
1 1 1 1 O1 O2 Hold output

Table 1: RingRAM logical operation

Step 3 - Reduce Complexity and Overhead: An even number
of inverters in a feedback loop produces a stable response that is
dictated by the inverter that first drives the others at power-on: a
race condition. However, a race condition requires only two inverter
gates—there is no longer a need for the 100+ inverters required
by a RO. Thus, to minimize area overhead and complexity of our
primitive, we reduce the feedback loop to two inverters. Eliminating
long inverter loops reduces area overhead, but biases the sensitivity
of our primitive toward manufacturing chaos and away from op-
erational chaos, due to the loss of the averaging effect. In §4, we
systematically increase the number of inverters in a loop to show
how hardware designers can tune RingRAM’s bias—choosing a
point along the hardware security primitive design space.

Step 4 - Unbounded Entropy Even though the result of step
three is a more efficient structure, it is inherently bounded by re-
quiring a power cycle to produce a new response. ROs produce
unbounded responses by splicing an 𝐴𝑁𝐷 gate into their feedback
path; this acts an an enable. While it may seem that this is a different
effect than a power cycle, we observe the practical effect of a power
cycle is to set all wires in the loop to 0. By splicing an 𝐴𝑁𝐷 gate
into the start of each leg of the cross-coupled feedback path (i.e.,
before each inverter input in this case) the wires in the loop will be
forced to 0—without a power cycle. Table 1 provides a truth table
of our primitives behavior. The key is that going from disabled to
enabled activates a race condition between the inverters, like a power
cycle in SRAM—yielding unbounded entropy.

Step 5 - Optimize Implementing 𝐴𝑁𝐷 gates and inverters re-
quires the use of redundant inverters, as a 𝐴𝑁𝐷 gate consists of a
𝑁𝐴𝑁𝐷 gate and an inverter at the transistor level. By replacing each
𝐴𝑁𝐷 and inverter pair with a 𝑁𝐴𝑁𝐷 gate, we reduce the required
number of transistors from 16 to 8 per cell. We further minimize
complexity by utilizing a single enable signal for both 𝑁𝐴𝑁𝐷 gates,
as this does not change the premise of the race condition. The final
result of our design is a simple unified hardware security primitive
that provides unbounded entropy at a higher rate than ROs, is nearly
as small and compact as SRAM, and is resistant to known attacks.

4 CONTROLLING COMPOSITION
Manufacturing variation tends to produce inverters with different
turn-on voltages for a given SRAM cell. This means that the base de-
sign of RingRAM heavily favors producing cells where one inverter
reliably wins the hardware race over the other. While this is great for
PUFs, it severely limits the entropy provided by a set of RingRAM

4

1 3 5 7
Gates per chain

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 R
in

gR
AM

 c
el

ls

Stable cells
Unstable cells

min-entropy
Shannon's Entropy

Reliability

0.0

0.2

0.4

0.6

0.8

1.0

En
tro

py

0.0

0.2

0.4

0.6

0.8

1.0

Re
lia

bi
lit

y

Figure 2: Increasing the number of gates per cross-coupled chain increases the
proportion of unstable cells usable by TRNGs and the resulting entropy.

cells, which require more random race outcomes. A simple solu-
tion is to add more cells, thereby increasing the entropy—at least
probabilistically. Unfortunately, this simple solution is inadequate,
because it requires adding roughly 32 RingRAM cells for every
unstable cell required to meet TRNG entropy requirements.

A superior solution is to expose a knob that designers use to
modulate the proportion of unstable cells for a given set of cells.
This way, designers can tune the composition of cells to match their
specific needs, without the hardware overhead of the naïve solution.
Unstable cells are those with relatively similar gate delays; hence, the
goal is to create chains (i.e., half of the cross-coupled feedback loop)
with similar propagation delays. To accomplish this, we leverage
the law of large numbers [12]: "the average of the results obtained
from a large number of trials should be close to the expected value
and will tend to become closer to the expected value as more trials
are performed." In RingRAM’s case, you can view each gate in a
chain as a trial from a distribution of manufacturing-time variation;
longer chains equate to more trials, hence more uniform total delay.
Thus, as chain length increases,6 it becomes more likely that a cell
has chains with similar propagation delays, i.e., is unstable.

To evaluate our ability to control RingRAM composition, we
implement 64 RingRAM cells on the FPGA platform from §8 and
collect 320K responses from each cell, repeating this for 2, 4, and 6
additional gates. We augment RingRAM’s layout to ensure longer
chains are strict extensions of shorter chains. The results in Figure 2
show that increasing the number of gates per chain averages-out
manufacturing-time variation, increasing the proportion of unstable
cells. This, in turn, increases both min-entropy and Shannon’s En-
tropy (see §8.2), with diminishing returns. We observe that this is the
result of more slightly unstable cells being added than perfectly (i.e.,
50%) unstable cells. The net effect is a reduction in the number
of transistors required to produce an unstable cell by between
44% and 60%, compared to adding more cells. Thus, this is an
effective approach to control where a RingRAM implementation lies
on the PUF/TRNG continuum.

6Note that each chain must have an odd number of gates to produce a bi-stable circuit
when cross-coupled with the opposing chain.

Active Learning CircuitRingRAM Cell

EN

Response

ClassificationShift Reg
(N-bit)

Threshold
Check

Figure 3: The active learning circuit dynamically classifies cells as either stable
or unstable based on a brief, recent, history of cell responses.

1 2 3 4 5 6 7 8
Bias (+/-)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Sh
ift

 re
gi

st
er

 s
iz

e

Shannon's Entropy

1 2 3 4 5 6 7 8
Bias (+/-)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Sh
ift

 re
gi

st
er

 s
iz

e

min-entropy

0.0
0.5
0.6

0.7

0.8

0.9

1.0

En
tro

py

Figure 4: Active learning increases entropy in the TRNG response across con-
figurations, with a 4-bit shift register ±1-bit bias being optimal in terms of entropy
and hardware overhead.

5 ON-CHIP PROCESSING
While increasing the number of gates per chain does increase the
proportion of unstable cells (i.e., total entropy), it does not allevi-
ate the burden on software to distill-out randomness (i.e., entropy
throughput). As explained in §8.2, software must take many more
RingRAM responses than it needs bits-of-randomness, because each
RingRAM output is only partially influenced by chaos. In the case
of the base RingRAM design on our FPGA, this influence ranges
between .02 and .06 random-bits per RingRAM response bit, depend-
ing on entropy metric. Even with controlled composition, entropy
is still below 1.0. A second source of concern is the noise in the
PUF response, which increases as chains lengthen. Thus, the current
RingRAM interface still requires extreme software post-processing
to separate and refine concerns.

The root cause of these issues is the mixing of PUF response and
TRNG response. The ideal unified hardware security primitive
provides separate PUF and TRNG interfaces, where the PUF
response is low noise and the TRNG response is high entropy. To
achieve this ideal, we enhance RingRAM’s design with the ability to
dynamically partition cells into stable and unstable and send the cell
responses to their respective, software accessible, interfaces. This
increases the entropy throughput to software, but the total entropy
provided by a set of RingRAM cells stays the same.

Active learning classifies each RingRAM cell by first collecting
several of its responses. If the number of 1’s in the response is within
a threshold (determined experimentally later) of the 50% count, then
the cell is marked at unstable; otherwise, the cell is marked as stable.
The TRNG register collects only unstable cell responses, increasing
throughput to software, while the PUF register replaces unstable cell

5

0 16 32 48 64
Cell

0

16

32

48

64

R
es

po
ns

e

0 16 32 48 64
Bit

0

16

32

48

64

R
es

po
ns

e

0 16 32 48 64
Bit

0

16

32

48

64

R
es

po
ns

e

Figure 5: RingRAM’s single-interface responses. Figure 6: Statically-classified RingRAM re-
sponses using enrollment data.

Figure 7: Active learning’s dynamic classifica-
tion response with a 4-bit shift register and ±1 bias.

responses based on bias, reducing noise. Figure 3 depicts how the
active learning circuit integrates with a RingRAM cell.

This design presents two knobs to designers: shift register size
and classification threshold. Shift register size dictates how many
bits are available for the classification decision. Increasing shift
register size reduces misclassification at the cost of increased area.
On the other hand, the classification threshold (i.e., bias) dictates
the allowable number of bits opposing the majority for a cell to
be classified as unstable. A high bias, relative to shift register size,
produces more unstable cells, increasing total entropy and TRNG
throughput, while reducing PUF noise. A low bias results in more
stable cells, increasing average entropy and the number of PUF bits.

To determine the optimal parameter settings, we sweep through
both parameters with an emphasis on entropy (because RingRAM is
PUF-dominant). For this exploration, we use the 5-gate-per-chain
64-cell FPGA implementation from §4. For each parameter com-
bination, we capture 320K TRNG responses. Figure 4 shows the
results for both entropy metrics in a two-dimensional heat map. In
all cases, active learning increases entropy compared to the original
design (the white boxes on the upward diagonal). We observe that,
across shift register sizes, the optimal bias is ±1; even cells with
low entropy are helpful to the overall TRNG performance. A 4-bit
shift register maximizes entropy, while minimizing hardware
overhead. The resulting 4-bit±1-bit configuration yields a Shan-
non’s Entropy >0.9999 (+16x) and a min-entropy of 0.981 (+35x),
meaning software has to waste up to 35x less time acquiring and
processing RingRAM data.

Besides reducing software’s burden, it turns out that active learn-
ing’s dynamic classification has another advantage: dynamic clas-
sification better leverages bursts of randomness, while avoiding
bursts of uniformity than static classification.7 The progression of
TRNG responses from the base, single interface design shown in
Figure 5, to software classification shown in Figure 6, to the active
learning’s output shown in Figure 7 makes clear the advantage of
dynamic, on-chip classification.

6 GETTING BETTER WITH AGE
Unlike software, electronic devices change over time due to opera-
tional and utilization effects in a process called aging. There are four
7By dynamically classifying bits as random, RingRAM with active learning adds a new
spatial dimension on top of per-cell randomness. This reordering increases entropy for
free.

main contributors to device aging: Hot-Carrier Injection (HCI), Time-
Dependant Dielectric Breakdown (TDDB), Electro-Migration (EM),
and Negative-Bias Temperature Instability (NBTI) [27]; the most
significant for modern transistors being NBTI [34]. NBTI increases
a gate’s threshold voltage (roughly, the voltage that it requires at its
input to start outputting a logic 1). This makes it slower to switch
from a 0 to a 1. NBTI is due to the accumulation of contamination
in the dielectric of a transistor (specifically a PMOS) [23].8 Because
contamination only occurs when a transistor is conducting charge
between the source and the drain (i.e., on), NBTI in cross-coupled
stable circuits like RingRAM and SRAM is data dependent.9

While data-dependent aging is a serious security risk for SRAM-
based hardware security primitives [27, 30, 32, 35], we leverage
aging to improve RingRAM’s performance for both PUFs and
TRNGs. We observe that we can direct device aging to gradually
influence the relative speeds of the cross-coupled chains: making
stable cells more stable and unstable cells more unstable. To harness
device aging to improve RingRAM’s performance, we intentionally
have cells hold a value while idle. For stable cells, we have them hold
a value that makes them more stable over time. For unstable cells,
we have them hold a value that makes them more unstable over time.
To determine the value, we observe that the faster chain dictates
the cell’s value. Hence, to make a cell more stable, we invert the
value, loading a value that causes the loser to turn-on and commence
aging. By extension, for unstable cells, we let the winner keep aging,
making the race closer next time.

To implement this functionality, we leverage the active learning
circuit. To this we add an aging mode that loads values to each
RingRAM chain dependent on cell type and response history. Fig-
ure 8 shows the directed aging circuit and Table 2 provides a logical
description. When RingRAM is idle, the directed aging circuit forces
the cell to hold values based in its recent value history.

Evaluating the exact impact of the directed aging circuit on
RingRAM’s performance is infeasible as it requires running the
FPGA prototype for many years. Short of that, we approximate the
effects of aging by leveraging the similarity in the core structure

8Positive-Bias Temperature Instability is also a source of device aging, but has been
shown to be less significant than NBTI. While both forms of BTI affect RingRAM, we
focus on NBTI because it dominates and for simplicity.
9NBTI affects ROs as well: it causes them to slow over time. This results in reduced
entropy rate for RO-TRNGs. Also, given asymmetries in susceptability to aging between
transistors, this adds noise to RO-PUFs.

6

EN1

Active Learning Circuit
RingRAM Cell

Shift Reg
(N-bit)

Threshold
Check

O1 O2

EN2

RESPONSE

MODE
EN

ENCORMUX MUX

MUX

Figure 8: The directed aging circuit gradually reduces PUF noise, while in-
creasing TRNG entropy, by aging cells according to values in the active learning
circuit’s shift register. Stable cells are set to values inverted from what is in the
register, further slowing the already slow gate. Unstable cells are set to values
matching those in the register, slowing the faster gate.

MODE EN ENC EN1 EN2 O1 O2
0 0 - 0 0 0 0
0 1 - 1 1 O2 O1
1 - 0 OR OR OR OR
1 - 1 OR OR OR OR

Table 2: Directed aging circuit’s logical behavior. MODE is 1 when directed ag-
ing is enabled, ENC encodes whether the cell is a stable/PUF cell (1) or a unsta-
ble/TRNG cell (0), and OR is the output from the cell’s shift register. O1 and O2
are the individual chain output values, regardless of chain length.

of SRAM and RingRAM. We gather 5 years worth of aging data
using four Texas Instruments MSP430G2553 launchpad develop-
ment boards as testbeds. We first enroll the boards by taking 51
measurements of their power-on state. Since NBTI aging is data-
dependent, we write all 1’s to half the boards and all 0’s to the other
half. After 5 years of accelerated aging [27], we take another 51
power-on state measurements and compare to the enrollment data.
The results of down-selecting bits that match what directed aging
would have done are (1) PUF response noise reduces to ±2-bits
(-40%) and (2) min-entropy increases by 122%. This makes sense
as directed aging aggressively moves unstable cells to 50% proba-
bility (±7%), which is what min-entropy is sensitive to. There is a
synergy between directed aging and controlled composition: con-
trolled composition creates partially-unstable cells and directed
aging gradually makes them less stable.

7 IMPLEMENTATION
RingRAM relies on the idea of a self-reinforcing, bi-stable feedback
loop that can be programmatically forced to an unstable point and
will eventually stabilize itself to a value that depends on both manu-
facturing and operational chaos. While there are a myriad of ways to
implement such functionality, we provide an area-optimal implemen-
tation comprised of 2 NAND gates (§3). This construction creates a
hardware-level race condition when enabled (Table 1). Using such
simple components, RingRAM is implementable using discrete cir-
cuit components, Field Programmable Gate Arrays (FPGAs), and as
part of an Application-Specific Integrated Circuit (ASIC).10

There are two sources of variation that a designer must avoid
when implementing RingRAM: systematic and structural. As

10An important aspect of the of the discrete and FPGA implementations is that they
are auditable and able to be integrated with existing systems. Auditability is important
given recent distrust in black-box TRNGs [17].

discussed in §2, systematic variation occurs both at manufacturing-
and run-time. Systematic variation occurs due to predictable changes
in transistor properties at chip- and wafer-scale and due to long-
running changes in a device’s operational environment. Alternatively,
structural variation is a universal difference in the placement and
routing of RingRAM components. For example, an enable register
being closer to one NAND gate than the other means the electrical
signal will reach the closer gate first, making it more likely to win
the hardware race. Both types of variation distort the PUF/TRNG-
cell ratio of RingRAM towards a PUF, while making the resulting
PUF responses more predictable across devices. We provide two
guidelines to avoid these sources of variation:

(1) Symmetric: As both components and wires have the potential
to add structural variation, use symmetrical placement and
routing to avoid structural variation.

(2) Tightly-packed: By keeping the chains of a cell physically
adjacent and its routing short, there is little room for system-
atic variation to influence chains asymmetrically.

7.1 Discrete Implementation
Implementing RingRAM using discrete components affords hard-
ware designers full control over RingRAM’s composition and the
resulting PUF response by hand-tuning the layout and parasitics.
Obviously, for threat models where the attacker has physical access
to the device, additional physical anti-tamper measures are necessary
to protect the primitive’s integrity [41]. We implement RingRAM
using four discrete Bipolar Junction Transistors (BJTs) as Figure 9
shows. We follow our implementation guidelines and layout the
BJTs symmetrically and pack them tightly. This implementation
creates the same race-condition between two NAND gates, where the
NAND gates are created using two NPN BJTs, connected in series.
When the base (i.e., center pin) of the NPN transistor is 1, it acts as
a short-circuit between the other two pins. Therefore, only when
both NPN BJTs that are connected in series have their base set to 1
is the output of the pair 0. This construction preserves the required
hardware-level race-condition as O1 and O2 contend with each other
until the cell stabilizes. In this setup, whether the cell is useful for a
PUF or TRNG depends on the relative properties of the transistors
and the resistors. Thus, tuning the bias of the cell is possible using
variable resistors.

7.2 HDL Implementation
Implementing RingRAM in a Hardware Descriptive Language (HDL)
presents challenges due to it’s required combinational feedback loop,
see Listing 1. By default, HDL synthesis and implementation tools
prevent the use of such feedback loops as they run contrary to syn-
chronous design practices. Also, RingRAM’s self-reinforcing loops
appear to be redundant at the digital abstraction level, so we must
prevent the tools from optimizing them away. To solve this challenge
we leverage three flags:

• ALLOW_COMBINATORIAL_LOOPS: prevents feedback
loops from being flagged as errors

• KEEP: prevents the component/wire from being removed
• DONT_TOUCH: prevents the component/wire from being

optimized away.
7

RingRAM

NAND 1 NAND 2

O1 O2

Vcc Vcc

EN

Output

Figure 9: RingRAM NPN BJT schematic.

Artix-7 tile

INT
Switchbox

CLBLL
SwitchboxSlice

A6

LUT A6
LUT A5 O1

O2

A6
A5

O6

O5

A4
A3
A2
A1

A5
A4
A3
A2
A1

LUT B6
LUT B5

MUX

BUF

EN

Output

LUT C6
LUT C5

LUT D6
LUT D5

Figure 10: RingRAM FPGA LUT schematic.

RingRAM

NAND 1 NAND 2

Vdd Vdd

EN

Output

O1

O2

Figure 11: RingRAM CMOS ASIC schematic.

1 module evalRingRAM (
2 input c lk ,
3 input en_in ,
4 output reg o u t) ;
5

6 (* ALLOW_COMBINATORIAL_LOOPS = " t r u e " ,
7 KEEP = " t r u e " ,
8 DONT_TOUCH=" t r u e " *)
9 wire nand_1 , nand_2 ;

10 reg en ;
11

12 a s s i g n nand_1 = ! (en & nand_2) ;
13 a s s i g n nand_2 = ! (en & nand_1) ;
14

15 always @(posedge c l k) begin
16 en <= e n _ i n ;
17 o u t <= nand_2 ;
18 end
19 endmodule

Listing 1: RingRAM hardware description used for FPGA and ASIC.

7.2.1 FPGA. FPGAs contain arrays of programmable logic blocks
and configurable interconnects, laid out in a regular pattern, which
allow designers to implement circuits rapidly and at low cost. Logic
gates, e.g., NAND gates, are implemented using Look-Up Tables
(LUTs). LUTs encode an input to output function that emulates the
behavior of the circuit they are implementing. FPGA logic blocks
are categorized into slices, where each slice contains (in our FPGA):
4 logic-function generators (i.e., LUTs) with 6 inputs to 2 outputs, 8
storage elements, wide-function multiplexers, and carry logic [43].
As a single RingRAM cell requires two NAND gates, we implement
up to four RingRAM cells per slice.

The major challenge with implementing RingRAM on an FPGA
is maintaining symmetry given the fixed and closed-source nature
of FPGA physical layouts. We bypass the auto-router by forcing the
placement of each RingRAM cell and the ports used on the LUT
to connect the components together. To meet our tightly-packed
requirement, we use vertically stacked LUTs for the NAND gates
of a RingRAM cell, because vertically-stacked slices are directly
connected via fixed wires. To minimize skewing the delay on our
enable wires (i.e., meet our symmetry requirement), we place an
enable buffer either in proximity to two symmetrical LUTs or in
an adjacent slice. Figure 10 shows the results of our automated
RingRAM placement and routing tool on a Xilinx Artix-7 FPGA.

Utilization Timing
LUT LUTRAM FF WNS Max Freq

RingRAM(1) 1 0 2 8.315ns 593MHz
RingRAM(3) 6 0 2 7.609ns 418MHz
RingRAM(5) 10 0 2 6.527ns 288MHz
RingRAM(7) 14 0 2 5.197ns 208MHz

RingRAM(5)+Active Learning 18 1 8 5.713ns 233MHz
RingRAM(5)+Active Learning+Active Aging 19 1 9 5.449ns 220MHz

Table 3: Artix 7 overhead and performance

Table 3 show the hardware area and timing cost of the various
RingRAM design-space options.

7.2.2 ASIC. An ASIC implementation of RingRAM engenders a
more symmetrical and compact design than is possible in FPGA and
discrete implementations. This is possible because ASIC implemen-
tations are not restricted by the fixed placement and routing options
provided by FPGAs. Area overhead is also reduced compared to
FPGA implementations, because there are no wasted transistors: our
FPGA implementation wastes the majority of a LUT’s capability. As
Figure 11 illustrates, our ASIC RingRAM implementation requires
eight transistors (four per NAND gate). This provides near-SRAM-
levels of density, as traditional SRAM cells consist of six transistors
(two per inverter and two access transistors). Taken together, ASIC
RingRAM implementations, on average, outperform FPGA imple-
mentations for both PUF and TRNG, due to the reduced systematic
variation and structural bias.

8 EVALUATION
A unified hardware security primitive must serve as the foundation
for both Physical Unclonable Functions (PUFs) and True Random
Number Generators (TRNGs). In earlier sections, we design and
implement RingRAM for this purpose. RingRAM is a hardware se-
curity primitive that leverages a simple, bi-stable, feedback loop that
captures both manufacturing and operational chaos. In this section,
we discover where RingRAM resides on the PUF/TRNG continuum,
then validate that it is a unified hardware security primitive.

11RO PUFs achieve high reliability by sacrificing area overhead and latency, averaging
up to 4 billion comparisons. A 64-bit RO-PUF requires 128 ROs (21.8%), two 32-bit
counters (25.6%), a 32-bit subtractor (15.0%), two 1:64 DEMUXs (18.8%), and two
64:1 MUXs (18.8%) [28].

8

Metric RO [28, 36] SRAM [1, 21] RingRAM

Se
cu

ri
ty

Single-use ✓ × [30, 47] ✓
Aging Resilient ✓ × [27, 30, 35] ✓

Thermal Resilient × [4, 40] ✓ ✓
Voltage Resilient × [3] ✓ ✓

PU
F

Reliability 99.1%11 92.2% 98.4%–94.4%
Uniformity 49.4% 48.7% 48.2%–47.2%
Uniqueness 47.2% 48.7% 48.4%–49.9%

T
R

N
G

Unbounded ✓ × ✓
Throughput 38M N/A 210M–228M
min-entropy 0.97 0.031 0.351–0.981

Shannon’s Entropy 0.99 0.058 0.423–0.999
Transistors/unified bit 1641.05 99.75 7.5–88.5

Table 4: RingRAM combines the best aspects of RO- and SRAM-based hard-
ware security primitives—without their security weaknesses. The range presented
for RingRAM represents the base design on the left to the 5-gate active learning
on the right.

The base system for all experiments is a 5-gate-per-chain version
RingRAM with active learning, implemented on the Xilinx Artix-7
FGPA [45] on a Digilent Arty-A7-100T evaluation board [13].12

Inside the FPGA, we implement a set of 64 RingRAM cells that
are broken-out dynamically into a 64-bit PUF response and a 64-bit
TRNG output by the active learning circuit. A custom state machine
reports the PUF response and TRNG output to a data collection
computer via a UART controller. A program running on a desktop
computer saves the UART data as a binary file.

8.1 RingRAM PUF
RingRAM provides ample stable cells, but are they useful for a
PUF? For use in a PUF, stable cells must repeatedly produce the
same response (i.e., reliable), while being non-biased (i.e., uniform),
and be device dependent (i.e., unique). To asses utility in a PUF, we
evaluate sets of 64 cells to prove that RingRAM meets these criteria,
quantitatively comparing to RO- and SRAM-based PUFs.

Reliability: The reliability of a cell is quantified by its ability to
repeatedly produce the same responses. To quantify response vari-
ance, we take 320K responses from our 64 cells, randomly select
one measurement to be the reference fingerprint, and calculate the
Hamming Distance between each measurement and the reference.
Figure 12 shows a histogram of these results as Self distance.
The graph follows a Gaussian distribution centered on 4 bits, in-
dicating that the resulting fingerprint contains 56 bits of potential
device-discrimination ability. To quantify reliability in a scalar value,
we evaluate response variation using Equation 1 [28], where 𝑚 is
320K responses, 𝑛 is 64-bits, R0 is the enrolled response, and Ri is
from the set of responses to compare to.

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100% − 1
𝑚

𝑚∑
𝑖=1

𝐻𝐷 (𝑅0, 𝑅𝑖)
𝑛

× 100% (1)

RingRAM’s measured reliability is 94.5%, as shown in Table 4, a
2.5% increase over SRAM and a 4.8% decrease from a RO. This is

12While we select an FPGA implementation for cost and speed reasons, we expect the
evaluation trends to hold for both discrete and ASIC implementations. Because of their
nature, we expect discrete implementations to be slightly more PUF oriented (due to
increased systematic and structural variation) and ASIC implementations to be slightly
more TRNG oriented (due to compactness and symmetry) than the FPGA.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Hamming Distance (bits)

0

5

10

15

20

Pe
rc

en
t o

f r
es

po
ns

es

Self distance
Intra distance
Inter distance

Figure 12: Distance in 64-bit responses from the same location on the same
FPGA (Self), from the same location on four other FPGAs (Inter), and from
different locations on the same FPGA (Intra). RingRAM’s responses are near
the ideal of 0-bits for Self and 32-bits for Inter and Intra.

expected as SRAM’s more compact and controlled layout yields a
higher rate of TRNG cells than an FPGA implementation, thus has
to contend with more noise in its fingerprint. We expect an ASIC
RingRAM implementation to be closer to SRAM.

Uniformity: The uniformity of a set of cells is their ability to pro-
duce balanced responses. A perfectly uniform response is a 1:1 ratio
of 0’s and 1’s, otherwise there exists predictability that reduces utility.
Like SRAM, RingRAM responses are uniformly distributed when
looking at many cells. To quantify uniformity in a scalar value, we
determine the ratio of 1’s and 0’s across the set of 320K responses
from just 64 cells using Equation 2 [28], where the variables match
those in Eq. 1 and HW() is the Hamming Weight.

𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 =
1
𝑚

𝑚∑
𝑖=1

𝐻𝑊 (𝑅𝑖)
𝑛

× 100% (2)

As shown in Table 4, RingRAM’s uniformity of 47% is on-par
with ROs and SRAM. We expect ASIC implementations to have a
small increase in uniformity due to tighter controls over cell layout
that increases symmetry.

Uniqueness: Uniqueness is dictated by a response’s dependency on
placement both within a chip (intra-chip distance) and across the
same location on multiple chips (inter-chip distance). We determine
intra-chip distance by measuring the Hamming Distance between 5
sets of 64 RingRAM cells placed in different locations in a single
chip and sampled 320K times. We determine inter-chip distance by
measuring the Hamming Distance between 5 sets of 64 RingRAM
cells placed in the same location on five different chips and sampled
320K times. Figure 12 shows that both intra- and inter-chip distances
are similar: 32-bits with a 99.9% confidence interval of +/- 3 bits.
Therefore, RingRAM’s responses have a 29 bit worst-case difference,
which is close to the ideal of 32-bits. More importantly, there is a
vast gulf between the distances between responses from the same
location and chip than from either other locations or other chips.

To quantify uniqueness, we condense the intra- and inter-chip
response differences using Equation 3 [28], the variables match those

9

Statistical Test P-Value Result
Monobit 0.839618578844032 PASS
Frequency Within a Block 0.0611787903895858 PASS
Runs 0.25424654016127324 PASS
Longest-Run-of-Ones in a Block 0.4602661335812786 PASS
Binary Matrix Rank 0.060600309853307055 PASS
Discrete Fourier Transform 0.831370987522874 PASS
Non-Overlapping Template Matching 0.9999962973281614 PASS
Overlapping Template Matching 0.490469422296025 PASS
Maurer’s "Universal Statistical" 0.9989051372547096 PASS
Linear Complexity 0.4876367178175764 PASS
Serial 0.033925539965049746 PASS
Approximate Entropy 0.05939790977947617 PASS
Cumulative Sums 0.8750549175582036 PASS
Random Excursions 0.024767950538244106 PASS
Random Excursions Variant 0.1453894509643879 PASS

Table 5: RingRAM passes the NIST test suite.

in Eq. 1, except Ri and Rj are responses from chips/locations i and j,
respectively, and 𝑐 is the number of chips/locations.

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 =
2

𝑐 (𝑐 − 1)

𝑐−1∑
𝑖=1

𝑐∑
𝑗=𝑖+1

𝐻𝐷 (𝑅𝑖 , 𝑅 𝑗)
𝑛

× 100% (3)

RingRAM’s measured intra-chip uniqueness is 46% and inter-
chip uniqueness 50%, giving RingRAM an average uniqueness of
48%. RingRAM is both device- and position-dependent, producing
uniqueness similar to RO and SRAM PUFs (Table 4).

8.2 RingRAM TRNG
For RingRAM to be a universal hardware primitive we must also
validate that its unstable cells are usable by TRNGs. Unstable cells
are created when the cross-coupled gates activate at nearly the same
voltage (i.e., time after enable goes high). The design of RingRAM
assumes that in such cases, chaotic operational variation controls
the winner of the hardware race condition. When this occurs, the
resulting cell response encodes some amount of chaos. In a TRNG
context, the amount of influence chaos has over a cell’s response is
referred to as its entropy; 0 entropy means the response is totally
deterministic, while 1.0 entropy means the response is totally non-
deterministic (i.e., completely random).

The goal of this experiment is to determine RingRAM’s entropy,
which dictates how many responses are required to produce a truly
random N-bit key. Unfortunately, this is a known challenging prob-
lem that can only be approximated with entropy estimation metrics.
Though there are many different entropy metrics, the two most pop-
ular metrics are min-entropy and Shannon’s Entropy.13 min-entropy
is a worst-case metric that quantifies the guessing odds of an attacker
that has a large number of previous RingRAM responses and uses
that information to increase their chances of guessing the next re-
sponse correctly. As shown in Equation 4, the best strategy is for the
attacker to guess the most likely response.

𝑚𝑖𝑛-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑙𝑜𝑔2
1

𝑃𝑀𝐴𝑋 (𝑥) (4)

13These two metrics come from the Rényi family of entropies, representing the worst
and average case, respectively [6].

The result is the number of bits of randomness provided by the num-
ber of bits in 𝑋 (64-bits in RingRAM’s case). To determine entropy,
which is randomness-per-response-bit, divide min-entropy by
the number of bits in 𝑋 .

Most threat models do not afford such a powerful attacker, hence
we look at Shannon’s Entropy. Shannon’s Entropy is an average-
case metric that quantifies the guessing odds of an attacker under the
assumption that they have no special understanding of the system. As
shown in Equation 5, there is no better strategy than blind guessing;
so the metric considers how far every possible response diverges
from the expected even probability (i.e., 1

2|𝑋 |).

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑛∑
𝑖=0

𝑃 (𝑥𝑖)𝑙𝑜𝑔2𝑃 (𝑥𝑖) (5)

The result is treated the same way as that of min-entropy.
To calculate RingRAM’s entropy we collect 320K responses

from each of 64 cells. Because collecting enough responses to see
sufficient duplicates in a space of 264 possible responses is infeasible,
we leverage the earlier observation of cell independence14 to break
the problem into a combination of 8, 8-bit responses. For each
8-bit chunk, we track the frequency every possible response. We
create an entropy for the entire 64-bits by averaging the 8, 8-bit
entropies. Table 4 shows that RingRAM’s min-entropy is 0.981 and
Shannon’s Entropy is >0.9999, better than SRAM- and RO-based
TRNGs. RingRAM also provides increased entropy throughput (i.e.,
random-bits-per-second) on our FPGA. Given RingRAM’s high
throughput advantage and unbounded nature, it represents the
superior primitive for a TRNG.

Entropy only quantifies predictability, it does not account for sta-
tistical patterns in the responses. The National Institute of Standards
and Technology (NIST) provides a statistical test suite used to vali-
date the entropy of TRNGs. While five-gate chains combined with
active learning provides high levels of Shannon’s Entropy and min-
entropy, those are coarse-grain metrics used to quantify the potential
for randomness. We use the NIST test suite to perform a more com-
prehensive set of statistical tests using a SHA256-based distilation
of RingRAM TRNG outputs to meet the input requirements of the
NIST test. We compress ⌈ 256.98 ⌉-bits of RingRAM responses down
to 256-bit values and pass them to the NIST test. As the results in
Table 5 show, RingRAM passes the entire NIST test suite.

9 RINGRAM’S THERMAL STABILITY
As mentioned in §2, a significant source of systematic run-time
variation is the temperature. Temperature has a known deleterious
effect on the performance of ROs due to their inability to filter-
out systematic run-time variation (especially for RO TRNGs). To
eliminate uncontrolled thermal deviations from contaminating our
results in earlier experiments, we used a Test Equity temperature
and humidity chamber (Model 123H) to fix the temperature 20°C.

While the cross-coupled nature of RingRAM should filter-out
systematic run-time variation, making it robust to temperature and
voltage changes, we experimentally verify this assumption. To do so,

14We select 8-bit symbol sizes so that our results directly compare to previous work [21].
Our script reports results from 1- to 16-bits, but every additional symbol bit requires
double the number of responses to remove the impact of random variations from the
resulting entropy.

10

Temperature 0°C 10°C 20°C 30°C 40°C

PU
F

Self Distance -0.5089 -0.0811 3.5712 -0.4702 -0.8141
Reliability +0.7952% +0.1268% 94.4199% +0.7347% +1.2721%
Uniformity -0.6324% -0.1589% 47.1771% +0.4278% +0.7836%

Uniqueness-Intra -1.0417% +0.0001% 45.8333% +0.0001% -1.0417%
Uniqueness-Inter +2.0833% +0.0001% 49.9999% +3.1250% +3.1250%

T
R

N
G min-entropy +0.0022 -0.0019 0.981 -0.0007 -0.0008

Shannon’s Entropy +0.0001 -0.0001 >0.9999 -0.0001 -0.0001

Table 6: RingRAM is robust against thermal variation.

we re-run earlier experiments, except this time, we vary temperature
between 0°C and 50°C, in 10°C increments. For the PUF validation
experiments, we use the original 20°C responses as our reference
response and compare against responses taken at other temperatures.
The results of these experiments, shown in Table 6, confirm that
RingRAM is robust against even large temperature variations. We
expect similar trends to hold for discrete and ASIC implementations.

10 IMPROVING SYSTEM SECURITY
In this section, we explore how system designers use RingRAM
to improve overall system security. Specifically, we implement a
RISC-V-based Linux system that leverages RingRAM to fix security
weaknesses brought on by slow True Random Number Generators
(TRNGs) and persistent insecure coding practices: (1) an Internet-
of-Things (IoT) system designer adds RingRAM to leverage its
high rate of entropy to quickly seed Linux’s pseudorandom number
generator after power-on and (2) a system designer replaces Linux’s
(pseudo)random device completely with RingRAM and even poorly-
coded software becomes more secure. From a high level, these tests
show how valuable RingRAM is to overall system security and how
it fits with IoT-class systems.

The full-system prototype is a System-on-Chip (SoC) centered
on the 64-bit Rocket RISC-V implementation [2]. The Rocket core
connects to peripherals through a 64-bit AXI bus [2]. We create a
64-cell RingRAM module that connects to the processor bus using
a AXI-Lite interface [44] that exposes two 32-bit Physical Unclon-
able Function (PUF) and two 32-bit TRNG registers. The SoC is
implemented on the Artix-7 FPGA used in §8, but with a microSD
expansion adaptor [14] that we need to store the boot image and
other software. Software executes from 256MB DDR3. The result-
ing SoC consumes 84.6% of the FPGA’s LUTs, with RingRAM
incurring an additional 0.8% overhead; RingRAM has no effect on
power or maximum frequency.

On this hardware platform, we run the busybox [5] user space and
Linux 5.5.2. To enable user mode software access to our registers,
we create a device driver that uses memory-mapped I/O to access
RingRAM’s registers and exposes the returned PUF and TRNG re-
sponses as a file in the /proc file system [24]. For experiments in-
volving RingRAM, we replace Linux’s default /dev/random and
/dev/urandom devices with our own device driver. In doing this,
RingRAM services all software requests for (pseudo)random
values—increasing security without software modification.

10.1 Filling the Boot-time Entropy Hole
The IoT era brings with it a new set of security concerns. While many
of these concerns are addressable using traditional cryptographic
primitives, such primitives require truly random numbers that are

Test
RingRAM Linux Default

overhead 𝜎/` p-value overhead 𝜎/` p-value
sha-256 0.13% 0.37% 0.12 0.01% 0.26% 0.39
sha-512 0.00% 0.45% 0.33 0.13% 0.37% 0.15
aes-128 0.52% 1.17% 0.17 -0.13% 1.25% 0.28
aes-192 -0.05% 0.15% 0.33 0.03% 0.20% 0.24
aes-256 0.12% 0.18% 0.06 0.08% 0.23% 0.23
rsa-1024 0.00% 0.00% - 0.00% 0.00% -
rsa-2048 0.00% 0.00% - 0.00% 0.00% -
average 0.19% 0.34% 0.15 0.00% 0.41% 0.48

Table 7: RISC-V Openssl speed test results

infeasible for an attacker to guess. As explained in §2, operational
chaos is the only viable source for such numbers. The focused and
embedded nature of many IoT devices means that there are few inter-
faces to operational chaos, dramatically limiting the rate of entropy.
Previous work shows the consequence of this slow accumulation of
entropy is the use of duplicate and weak keys (e.g., .75% of TLS
certs. and 1% of SSH DSA, respectively), because software requires
randomness before it is available [19, 20, 25]; this is referred to as
the boot-time entropy hole [20].

To show that RingRAM effectively fills the boot-time entropy
hole, we apply our RingRAM-enhanced system to the findings of
the “Mining Ps and Qs” paper. There, the authors show that it takes
roughly 66 seconds for 192-bits of true randomness to accumu-
late so that Linux’s random device (/dev/random) can seed the
pseudorandom device (/dev/urandom). Insecurity arises when a
security-critical program (e.g., sshd) pulls from the pseudorandom
device for secret generation before it has been influenced by the
random device (e.g., within the first 5 seconds post-boot-up in the
case of sshd). Without RingRAM, the limited sources of entropy
(e.g., clock skew) result in a deterministic result from the pseudoran-
dom device—eliminating security guarantees. Measurements from
our SoC show that, with RingRAM, 192-bits of true randomness is
available in 77.4`𝑠. Thus, by the time sshd requests data from
the pseudorandom device, it could be influenced by the random
device >60,000 times, making the returned results—and resulting
key—unique and non-deterministic.

10.2 Taking the pseudo out of random
While /𝑑𝑒𝑣/𝑟𝑎𝑛𝑑𝑜𝑚 provides a source of true randomness, it tra-
ditionally comes at the cost of halting the execution of programs
that access it while it accumulates sufficient randomness to service
the request. This is why operating systems present an alternative
interface that provides a best-effort source of apparent randomness;
in Linux, programs access this interface through /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚.
To eliminate blocking, /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚 turns a small amount of true
randomness from /𝑑𝑒𝑣/𝑟𝑎𝑛𝑑𝑜𝑚 into an unbounded amount of ap-
parent randomness. Because the outputs from /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚 are
based—deterministically—on a small amount of true randomness,
any security based on them is limited to the length and secrecy
of the seed value from /𝑑𝑒𝑣/𝑟𝑎𝑛𝑑𝑜𝑚. While Linux documentation
states that /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚 must not be used for security-critical ap-
plications, many (including openssl) use it because of its more
convenient interface and due to developer ignorance or distrust of

11

black-box TRNGs. Work over the years shows that the pseudoran-
dom generators that underpin /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚 have flaws that limit
their security beyond what is expected [10]. Instead of trying to
chase the perfect pseudorandom number generator implementation,
we create a blocking-free TRNG using RingRAM. This eliminates
the need for /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚,15 reducing the trusted computing base
and automatically eliminating programmer errors.

To show that our /𝑑𝑒𝑣/𝑢𝑟𝑎𝑛𝑑𝑜𝑚-free prototype has no ill-effects
on software, we boot Linux and run openssl’s built-in benchmark
suite speedtest on the most popular cryptographic algorithms
SHA-2, AES, and RSA, using the most common key sizes. We per-
formed 20 trials of each configuration to account for noise from the
operating system and timing measurement. Note that by replacing
Linux’s (pseudo)random devices, all software that requires random-
ness uses RingRAM, not just openssl. The system and openssl
perform—problem free—for the entire evaluation. Table 7 provides
both the running time of RingRAM-based and the default sources of
randomness relative to openssl’s CRNG pseudorandom generator.
These results show that RingRAM provides a TRNG that is as fast as
pseudorandom generators, opening the door to TRNG-only systems.

11 RELATED WORK
While Ring Oscillators (ROs) and Static Random Access Memory
(SRAM) are the most common and well-studied foundations for a
unified hardware security primitive, researchers have explored other
circuits to capture manufacturing and operational chaos. In general,
there are two broad classes of approach: digital and analog. ROs and
SRAM are digital approaches as they are comprised of digital gates
whose output value encodes chaos. Alternatively, a Phase Locked
Loop is an analog system that directly measures chaos in the analog
domain. For Internet-of-Things deployments that are often highly-
constrained and low-cost, digital systems are preferred since they do
not require special purpose blocks while building a chip. Here we
cover some of the more popular RO and SRAM alternatives.
Self Timed Ring (STR)-based TRNGs [9] and PUFs [31] are an ex-
tension to the base RO design, aimed at increasing entropy rate. They
replace an inverter with a Muller-C+inverter combination. Muller-C
gates are unique in that both inputs must be equal to set or reset its
outputs, maintaining its state otherwise. By using dual inputs, multi-
ple propagation loops are created that run simultaneously, allowing
them designs to capture operational chaos more efficiently, but with
a significantly higher overhead cost compared to ROs—making one
of its weak points worse; when area overhead is accounted for, the
benefit STRs over ROs disappears.
Phase Locked Loops (PLL) are built-in analog components that
provide on-chip clock generation. To guarantee the reliability of the
output frequency, PLLs have built-in control circuity that dynami-
cally adjusts a Voltage Controlled Oscillator (VCO) [18]. This miti-
gates all manufacturing and systematic operational variation, but op-
erational chaos remains as jitter in the output frequency. PLL based
TRNGs capture jitter using a series of cascading Flip-Flops running
off the PLL’s input source, effectively creating a metastable state
between the input and output frequencies [16, 38, 48]. Compared
to RO’s, PLL based TRNGs minimize area overhead by re-utilizing

15We keep it around, because software expects it. It is now just an alias for
/dev/random

included PLLs. Unfortunately, we are unaware of any PLL-based
PUFs and it is not clear how to create one.
Metastability is an unstable equilibrium state in which a devices
may persists for an unbound time [8]. Given that operational chaos
influences the outcome of a metastable state [42], they are viable
foundations for TRNGs. At a high level, both SRAM and RingRAM
are metastability based, but their PUF-oriented natures highlights
the primary challenge with metastability-based primitives: creating a
metastable state. Unlike SRAM and RingRAM which leverage many
samples of simple hardware loops, another class of designs are self-
tuning in that they dynamically alter circuit parameters to filter sys-
tematic variation [26, 29, 39]. While this increases entropy, it adds
complexity, and prevents them from serving as a PUF. Another ap-
proach is to capture chaos in the time it takes to resolve a metastable
state [37], as opposed to the final value. While unique, recent work
shows that the metastable settling time is susceptible to systematic
operation variation, leaving TRNGs open to attack [7]. RingRAM
shows that stable-value focused metastable-base primitives are the
right direction, but choosing between PUFs and TRNGs is a false
choice, a designer can use our enhancements to select the desired
balance for their application.

12 CONCLUSION
RingRAM is a hardware security primitive, composed of simple
logic gates, that is readily implementable using a range of hard-
ware technologies. Our experiments show that RingRAM provides
the necessary foundation for both true random number generators
and physical unclonable functions. The most important aspect of
RingRAM is that it combines the advantages of existing hardware
security primitives, but without their drawbacks, making RingRAM
more practical, deployable, and secure. We highlight RingRAM’s de-
ployability and benefit to system security showing how, when added
to a Linux-based System-on-Chip, it increases software security.

The power of RingRAM comes from a focus on chaos, both static
and dynamic. A hardware security primitive must harness dynamic
chaos to serve as a base for true random number generators. A
hardware security primitive must harness static chaos to serve as a
base for physical unclonable functions. By understanding available
sources of chaos, how they impact hardware, and how existing
primitives measure that chaos, it is possible to design a single, ring-
based, hardware security primitive to rule them all.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their feedback and sugges-
tions that enhanced the quality of this work. The project depicted is
sponsored by the Defense Advanced Research Projects Agency. The
content of the information does not necessarily reflect the position
or the policy of the Government, and no official endorsement should
be inferred. Approved for public release; distribution is unlimited.

REFERENCES
[1] Ilia A. Bautista Adames, Jayita Das, and Sanjukta Bhanja. 2016. Survey of

emerging technology based physical unclonable funtions. In International Great
Lakes Symposium on VLSI (GLSVLSI). 317–322. https://doi.org/10.1145/2902961.
2903044 ISSN: null.

[2] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,

12

https://doi.org/10.1145/2902961.2903044
https://doi.org/10.1145/2902961.2903044

Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. EECS Department, University of California, Berkeley.

[3] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, François Poucheret,
Bruno Robisson, and Philippe Maurine. 2012. Contactless Electromagnetic Active
Attack on Ring Oscillator Based True Random Number Generator. In Constructive
Side-Channel Analysis and Secure Design. Vol. 7275. Springer Berlin Heidelberg,
Berlin, Heidelberg, 151–166. https://doi.org/10.1007/978-3-642-29912-4_12

[4] Eduardo Boemo and Sergio López-Buedo. 1997. Thermal monitoring on FPGAs
using ring-oscillators. In Field-Programmable Logic and Applications (Lecture
Notes in Computer Science). Springer, Berlin, Heidelberg, 69–78. https://doi.org/
10.1007/3-540-63465-7_212

[5] BusyBox. 2019. BusyBox: The Swiss Army Knife of Embedded Linux. https:
//busybox.net/about.html.

[6] Christian Cachin. 1997. Entropy measures and unconditional security in cryptog-
raphy. Ph.D. Dissertation. ETH Zurich.

[7] Y. Cao, V. Rožić, B. Yang, J. Balasch, and I. Verbauwhede. 2016. Exploring active
manipulation attacks on the TERO random number generator. In International
Midwest Symposium on Circuits and Systems (MWSCAS). 1–4.

[8] T.J. Chaney and C.E. Molnar. 1973. Anomalous Behavior of Synchronizer and
Arbiter Circuits. IEEE Trans. Comput. C-22 (Apr 1973), 421–422. https://doi.
org/10.1109/T-C.1973.223730

[9] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet. 2013. A Self-Timed Ring
Based True Random Number Generator. In IEEE 19th International Symposium
on Asynchronous Circuits and Systems. 99–106. https://doi.org/10.1109/ASYNC.
2013.15

[10] Shaanan Cohney, Andrew Kwong, Shahar Paz, Daniel Genkin, Nadia Heninger,
Eyal Ronen, and Yuval Yarom. 2020. Pseudorandom Black Swans: Cache Attacks
on CTR_DRBG. In IEEE Symposium on Security and Privacy (Oakland). 750–
767.

[11] Ian Cutress and Wendell Wilson. 2020. Testing a Chinese x86 CPU: A Deep Dive
into Zen-based Hygon Dhyana Processors. https://www.anandtech.com/show/
15493/hygon-dhyana-reviewed-chinese-x86-cpus-amd/3.

[12] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and Lu-
dolf Erwin Meester. 2005. A Modern Introduction to Probability and Statistics.
Springer London. https://doi.org/10.1007/1-84628-168-7

[13] Digilent. [n.d.]. Arty A7 Reference Manual. https://reference.digilentinc.com/
reference/programmable-logic/arty-a7/reference-manual

[14] Digilent. [n.d.]. Pmod SD Reference Manual. https://reference.digilentinc.com/
_media/reference/pmod/pmodsd/pmodsd_rm.pdf

[15] Maurizio Di Paolo Emilio. 2020. EETimes - Maxim Intros MCU with PUF
Technology. https://www.eetimes.com/maxim-intros-mcu-with-puf-technology/

[16] Viktor Fischer and Miloš Drutarovský. 2003. True Random Number Generator
Embedded in Reconfigurable Hardware. In Cryptographic Hardware and Embed-
ded Systems - CHES 2002 (Lecture Notes in Computer Science), Burton S. Kaliski,
cetin K. Koc, and Christof Paar (Eds.). Springer Berlin Heidelberg, 415–430.

[17] Dan Goodin. 2013. We cannot trust Intel and Via’s chip-based crypto, FreeBSD
developers say. https://arstechnica.com/information-technology/2013/12/we-
cannot-trust-intel-and-vias-chip-based-crypto-freebsd-developers-say/.

[18] Guan-Chyun Hsieh and J. C. Hung. 1996. Phase-locked loop techniques. A
survey. IEEE Transactions on Industrial Electronics 43 (Dec 1996), 609–615.
https://doi.org/10.1109/41.544547

[19] Z. Gutterman, B. Pinkas, and T. Reinman. 2006. Analysis of the Linux random
number generator. In IEEE Symposium on Security and Privacy (Oakland).

[20] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2012.
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices.
In USENIX Security Symposium (USENIX Security). 205–220.

[21] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. 2009. Power-Up SRAM
State as an Identifying Fingerprint and Source of True Random Numbers. IEEE
Trans. Comput. 58 (Sep 2009), 1198–1210. https://doi.org/10.1109/TC.2008.212

[22] Intrinsic ID. 2017. White Paper - The reliability of SRAM PUF. ,
16 pages. https://www.intrinsic-id.com/wp-content/uploads/2017/08/White-
Paper-The-reliability-of-SRAM-PUF.pdf

[23] K. Kang, H. Kufluoglu, K. Roy, and M. Ashraful Alam. 2007. Impact of Negative-
Bias Temperature Instability in Nanoscale SRAM Array: Modeling and Analysis.
Transactions on Computer-Aided Design of Integrated Circuits and Systems 26,
10 (Oct 2007), 1770–1781.

[24] Michael Kerrisk. [n.d.]. proc(5) - Linux manual page. http://man7.org/linux/man-
pages/man5/proc.5.html

[25] JD Kilgallin. 2019. Factoring RSA Keys in the IoT Era. In IEEE International
Conference on Trust, Privacy and Security in Intelligent Systems, and Applications
(TPSISA).

[26] D.J. Kinniment and E.G. Chester. 2002. Design of an on-chip random number
generator using metastability. In Proceedings of the 28th European Solid-State
Circuits Conference. 595–598.

[27] R. Maes and V. van der Leest. 2014. Countering the effects of silicon aging on
SRAM PUFs. In International Symposium on Hardware-Oriented Security and

Trust (HOST). 148–153.
[28] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. 2013. A System-

atic Method to Evaluate and Compare the Performance of Physical Unclonable
Functions. In Embedded Systems Design with FPGAs. Springer, New York, NY,
245–267. https://doi.org/10.1007/978-1-4614-1362-2_11

[29] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. 2011. FPGA-
Based True Random Number Generation Using Circuit Metastability with Adap-
tive Feedback Control. In Cryptographic Hardware and Embedded Systems –
CHES 2011 (Lecture Notes in Computer Science). Springer Berlin Heidelberg,
17–32.

[30] Joseph McMahan, Weilong Cui, Liang Xia, Jeff Heckey, Frederic T. Chong, and
Timothy Sherwood. 2017. Challenging on-chip SRAM security with boot-state
statistics. In Symposium on Hardware Oriented Security and Trust (HOST). 101–
105.

[31] Julian Murphy, Maire O’Neill, Frank Burns, Alex Bystrov, Alex Yakovlev, and
Basel Halak. 2012. Self-Timed Physically Unclonable Functions. In 5th Inter-
national Conference on New Technologies, Mobility and Security (NTMS). 1–5.
https://doi.org/10.1109/NTMS.2012.6208707 ISSN: 2157-4960.

[32] S. P. Park, K. Kang, and K. Roy. 2009. Reliability Implications of Bias-
Temperature Instability in Digital ICs. IEEE Design Test of Computers 26 (Nov
2009), 8–17. https://doi.org/10.1109/MDT.2009.154

[33] C.S. Petrie and J.A. Connelly. 1996. Modeling and simulation of oscillator-based
random number generators. In IEEE International Symposium on Circuits and
Systems (ISCAS), Vol. 4. 324–327 vol.4. https://doi.org/10.1109/ISCAS.1996.
541967

[34] V. Reddy, A. T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost, and S.
Krishnan. 2002. Impact of negative bias temperature instability on digital circuit
reliability. In International Reliability Physics Symposium (RELPHY). 248–254.

[35] A. Roelke and M. R. Stan. 2016. Attacking an SRAM-Based PUF through Wearout.
In IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 206–211.

[36] D. Schellekens, B. Preneel, and I. Verbauwhede. 2006. FPGA Vendor Agnostic
True Random Number Generator. In International Conference on Field Pro-
grammable Logic and Applications (FPL). 1–6.

[37] Michal Varchola and Milos Drutarovsky. 2010. New High Entropy Element for
FPGA Based True Random Number Generators. In Cryptographic Hardware and
Embedded Systems (CHES). 351–365.

[38] M. Varchola, M. Drutarovsky, R. Fouquet, and V. Fischer. 2008. Hardware
Platform for Testing Performance of TRNGs Embedded in Actel Fusion FPGA.
In 18th International Conference Radioelektronika. 1–4. https://doi.org/10.1109/
RADIOELEK.2008.4542712

[39] Ihor Vasyltsov, Eduard Hambardzumyan, Young-Sik Kim, and Bohdan Karpinskyy.
2008. Fast Digital TRNG Based on Metastable Ring Oscillator. In Cryptographic
Hardware and Embedded Systems – CHES 2008 (Lecture Notes in Computer
Science). Springer Berlin Heidelberg, 164–180.

[40] T.C. Weigandt, Beomsup Kim, and P.R. Gray. 1994. Analysis of timing jitter
in CMOS ring oscillators. In Proceedings of IEEE International Symposium on
Circuits and Systems - ISCAS ’94, Vol. 4. 27–30 vol.4. https://doi.org/10.1109/
ISCAS.1994.409188

[41] Steve H. Weingart. 2000. Physical Security Devices for Computer Subsystems:
A Survey of Attacks and Defenses. In Cryptographic Hardware and Embedded
Systems — CHES 2000 (Lecture Notes in Computer Science). Springer, Berlin,
Heidelberg, 302–317. https://doi.org/10.1007/3-540-44499-8_24

[42] J. Wu and M. O’Neill. 2010. Ultra-lightweight true random number generators.
Electronics Letters 46 (Jul 2010), 988–990. https://doi.org/10.1049/el.2010.0893

[43] Xilinx. 2016. 7 Series FPGAs Configurable Logic Block User Guide (UG474). ,
74 pages.

[44] Xilinx. 2016. AXI GPIO v2.0: LogiCORE IP Product Guide. , 34 pages.
[45] Xilinx. 2018. 7 Series FPGAs Data Sheet: Overview (DS180). , 18 pages.
[46] Xinghai Tang, V. K. De, and J. D. Meindl. 1997. Intrinsic MOSFET parameter

fluctuations due to random dopant placement. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 5 (Dec 1997), 369–376. https://doi.org/10.1109/
92.645063

[47] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A. Sadeghi. 2016. Remanence
Decay Side-Channel: The PUF Case. IEEE Transactions on Information Forensics
and Security 11, 6 (2016), 1106–1116.

[48] M. Šimka, M. Drutarovský, and V. Fischer. 2011. Testing of PLL-based true
random number generator in changing working conditions. Radioengineering 20
(2011), 94–101.

13

https://doi.org/10.1007/978-3-642-29912-4_12
https://doi.org/10.1007/3-540-63465-7_212
https://doi.org/10.1007/3-540-63465-7_212
https://busybox.net/about.html
https://busybox.net/about.html
https://doi.org/10.1109/T-C.1973.223730
https://doi.org/10.1109/T-C.1973.223730
https://doi.org/10.1109/ASYNC.2013.15
https://doi.org/10.1109/ASYNC.2013.15
https://www.anandtech.com/show/15493/hygon-dhyana-reviewed-chinese-x86-cpus-amd/3
https://www.anandtech.com/show/15493/hygon-dhyana-reviewed-chinese-x86-cpus-amd/3
https://doi.org/10.1007/1-84628-168-7
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
https://reference.digilentinc.com/_media/reference/pmod/pmodsd/pmodsd_rm.pdf
https://reference.digilentinc.com/_media/reference/pmod/pmodsd/pmodsd_rm.pdf
https://www.eetimes.com/maxim-intros-mcu-with-puf-technology/
https://arstechnica.com/information-technology/2013/12/we-cannot-trust-intel-and-vias-chip-based-crypto-freebsd-developers-say/
https://arstechnica.com/information-technology/2013/12/we-cannot-trust-intel-and-vias-chip-based-crypto-freebsd-developers-say/
https://doi.org/10.1109/41.544547
https://doi.org/10.1109/TC.2008.212
https://www.intrinsic-id.com/wp-content/uploads/2017/08/White-Paper-The-reliability-of-SRAM-PUF.pdf
https://www.intrinsic-id.com/wp-content/uploads/2017/08/White-Paper-The-reliability-of-SRAM-PUF.pdf
http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1109/NTMS.2012.6208707
https://doi.org/10.1109/MDT.2009.154
https://doi.org/10.1109/ISCAS.1996.541967
https://doi.org/10.1109/ISCAS.1996.541967
https://doi.org/10.1109/RADIOELEK.2008.4542712
https://doi.org/10.1109/RADIOELEK.2008.4542712
https://doi.org/10.1109/ISCAS.1994.409188
https://doi.org/10.1109/ISCAS.1994.409188
https://doi.org/10.1007/3-540-44499-8_24
https://doi.org/10.1049/el.2010.0893
https://doi.org/10.1109/92.645063
https://doi.org/10.1109/92.645063

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 10
1

10
3

10
5

10
7

10
9

11
1

11
3

11
5

11
7

11
9

12
1

12
3

12
5

12
7

Row index

1
2
3
4
5
6

C
ol

um
n

in
de

x

0.5 0.6 0.7 0.8 0.9 1.0
Cell response stability

Figure 13: There is no obvious correlation between location and RingRAM cell stability.

A RINGRAM’S SPATIAL LOCALITY

Figure 13 shows the spatial relationship of 768 individual RingRAM
cells on a Xilinx Artix-7 FGPA [45] on a Digilent Arty-A7-100T
evaluation board [13].

B ARTIFACT APPENDIX
B.1 Abstract
This artifact appendix describes how to use and implement RingRAM
to reproduce the results presented in this paper. The artifact contains
the source code for RingRAM, an evaluation design, data capture
scripts, implementation across three evaluation boards, and is pub-
licly available as a GitHub repository: https://github.com/FoRTE-
Research/RingRAM. In addition we demonstrate how to place/rout
RingRAM cells across the FPGA as well as porting our evaluation
design onto other FPGAs.

B.2 Artifact check-list (meta-information)
• Program: Vivado, python3
• Hardware: Arty-A735, Arty-A7100, Virtex7-VC709
• Output: 64-bits depicting the state of 64-RingRAM cells
• Experiments: Capture 320,000 samples from 64-RingRAM

cells
• How much disk space required (approximately): 10MB
• How much time is needed to prepare workflow (approxi-

mately): 20mins
• How much time is needed to complete experiments (ap-

proximately): 10mins
• Publicly available: Yes
• Code licenses (if publicly available): MIT License

B.3 Description
B.3.1 How to access. This artifact is publicly accessible and
cloneable through its GitHub repository: https://github.com/FoRTE-
Research/RingRAM. The repository contains the RingRAM prim-
itive, an evaluation design used to test and monitor the state of
RingRAM cells, and scripts for creating symmetric and tightly
packed cells.

B.3.2 Hardware dependencies. While RingRAM can be ported
onto any FPGA system, this artifact was built and evaluated using
these three evaluation boards: Arty A7-35, Arty A7-100, and VC709

B.3.3 Software dependencies.

(1) Vivado: All the evaluation boards in this artifact utilize Xilinx
FPGAs. Therefore Xilinx’s Vivado design suite is required to
synthesis, place/route, and generate bitstreams.

(2) python3: As RingRAM layouts are required to be symmetric
and tightly packed, this artifact controls placement by modify-
ing the Xilinx Design contraint (.xdc) file. We utilize python
to automate this process allowing us to move and port our
layout.

B.4 Installation
(1) Clone repository:

• https://github.com/FoRTE-Research/RingRAM
(2) Creating vivado project using make commands:

• Arty A7-35: make RingRAM-A735
• Arty A7-100: make RingRAM-A7100
• Virtex 7-VC709: make RingRAM-VC709

(3) Creating vivado project manually:
• Create Project
• Project Type - RTL Project
• Add Sources - Include Verilog (.v) files in HDL directory
• Add Constraints - Include Xilinx Design Constraints (.xdc)

files in HDL directory

B.5 Experiment workflow
(1) Generate a bitstream data programming file of the RingRAM

evaluation design by running synthesis and implementation
on the provided HDL files. This can be done manually or by
running make (RingRAM-A735, RingRAM-A7100, RingRAM-
VC709)

(2) Capture the serial output using the captureSerial script
(3) Download bitstream data programming file into the targeted

FPGA device using Vivado’s Hardware Manager

B.6 Evaluation
To utilize RingRAM in any design, one need only to instantiate
the RingRAM component found in RRAM.v. However to evaluate
RingRAM we create a state machine (RRAM_CTRL.v) that controls
the enables of the RingRAM cells and transmits their states through
a UART port (UART_CTRL.v). Controlling the enables allows us
to set and reset their race condition: LOW enables prevents any feed-
back forcing the outputs to be high, HIGH enables initiates the race
condition. To properly evaluate RingRAM cells we must capture and
examine the result of multiple race conditions across multiple cells.
To achieve this, the state machine continuously toggles the enable
and transmits the cell’s outputs through the serial. To optimize serial
communication we do not encode our data in ASCII, instead the raw

14

https://github.com/FoRTE-Research/RingRAM
https://github.com/FoRTE-Research/RingRAM
https://github.com/FoRTE-Research/RingRAM
https://github.com/FoRTE-Research/RingRAM
https://www.xilinx.com/products/boards-and-kits/1-elhaap.html
https://www.xilinx.com/products/boards-and-kits/1-w51quh.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/support/download.html
https://www.python.org/downloads/
https://github.com/FoRTE-Research/RingRAM

binary values of all the cells are transmitted in bursts. To capture and
store these iterations we wrote a script (captureSerial) that
automatically verifies that when LOW enable all outputs are HIGH
and when HIGH enable stores the outputs of the race conditions in a
log file.

Command:
captureSerial [-P] [-F]
Parameters:

(1) [-p] [-P] [-PORT]: Location of the serial port
(2) [-f] [-F] [-FILE]: File output path

All results generated in this paper were extracted utilizing this
state machine (RRAM_CTRL.v on 64 RingRAM cells to capture
(captureSerial) 320,000 samples. Depending on the desired
evaluation there are customization options available: physical place-
ment, inverter chain lengths, and the number of RingRAM cells.

B.7 Experiment customization
There are two sources of variation that a designer must avoid when
implementing RingRAM: systematic and structural. We provide
two guidelines to avoid these sources of variation: Symmetric and
Tightly-packed. The xdcRingRAMCC script generates a Xilinx De-
sign Constraints (.xdc) file that adheres to these guidelines:

Command:
xdcRingRAMCC [-F] [-C] [-I] [-X] [-Y] [-P]
Parameters:

(1) [-f][-F][-FPGA]: Which FPGA design to use
(2) [-c][-C][-CELLS]: RingRAM cells to generate
(3) [-i][-I][-INV]: Length of the RingRAM inverter chains
(4) [-x][-X][-POSX]: Starting horizontal index of the LUT
(5) [-y][-Y][-POSY]: Starting vertical index of the LUT
(6) [-p][-P][-PATH]: The location and name of the RingRAM

primitive

B.7.1 Placement. To customize the physical location of the RingRAM
cells modify the [-X] and [-Y] parameters. However, as it is impor-
tant to keep symmetry, you should examine the LUT placements of
the FPGA. Open the synthesis/implementation design in Vivado and
examine the layout to determine which cells to use.

B.7.2 Inverter Chain Length. To customize the inverter chain
length of the RingRAM cells modify the:

(1) xdcRingRAMCC: The [-I] parameter
(2) top_level: The g_RRAM_INV parameter

B.7.3 RingRAM Cells. To customize the number of RingRAM
cells modify the:

(1) xdcRingRAMCC: The [-C] parameter
(2) top_level: The g_RRAM_CELLS parameter

B.7.4 Porting to another FPGA. The RingRAM primitive RRAM.v
can be instantiated in any design or on any FPGA. To customize
the number of cells or the length of the inverter chains set the
g_RRAM_CELLS or g_RRAM_INV parameters respectively.

However to port the RingRAM layout it is necessary to modify
the:

(1) xdcRingRAMCC: [-P] and [-F] parameter

(2) xdcAddBlocks: add blocks to contain the equivalent pinouts
and pblock locations.

15

	Abstract
	1 Introduction
	2 Background
	2.1 PUF
	2.2 TRNG
	2.3 Unified Hardware Security Primitive

	3 Design
	4 Controlling Composition
	5 On-chip Processing
	6 Getting Better with Age
	7 Implementation
	7.1 Discrete Implementation
	7.2 HDL Implementation

	8 Evaluation
	8.1 RingRAM PUF
	8.2 RingRAM TRNG

	9 RingRAM's Thermal Stability
	10 Improving System Security
	10.1 Filling the Boot-time Entropy Hole
	10.2 Taking the pseudo out of random

	11 Related Work
	12 Conclusion
	References
	A RingRAM's Spatial Locality
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation
	B.5 Experiment workflow
	B.6 Evaluation
	B.7 Experiment customization

