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ABSTRACT

The abundance of embedded systems and smart devices increases
the risk of physical memory disclosure attacks. One such classic non-
invasive attack exploits dynamic RAM’s temperature-dependent
ability to retain information across power cycles—known as a cold
boot attack. When exposed to low temperatures, DRAM cells pre-
serve their state for a short time without power, mimicking non-
volatile memories in that time frame. Attackers exploit this physical
phenomenon to gain access to a system’s secrets, leading to data
theft from encrypted storage. To prevent cold boot attacks, pro-
grammers hide secrets on-chip in Static Random-Access Memory
(SRAM); by construction, on-chip SRAM is isolated from external
probing and has little intrinsic capacitance, making it robust against
cold boot attacks.

While it is the case that SRAM protects against traditional cold
boot attacks, we show that there is another way to retain informa-
tion in on-chip SRAM across power cycles and software changes.
This paper presents Volt Boot, an attack that demonstrates a vul-
nerability of on-chip volatile memories due to the physical sep-
aration common to modern system-on-chip power distribution
networks. Volt Boot leverages asymmetrical power states (e.g., on
vs. off) to force SRAM state retention across power cycles, elimi-
nating the need for traditional cold boot attack enablers, such as
low-temperature or intrinsic data retention time. Using several
modern ARM Cortex-A devices, we demonstrate the effectiveness
of the attack in caches, registers, and iRAMs. Unlike other forms
of SRAM data retention attacks, Volt Boot retrieves data with 100%
accuracy—without any complex post-processing.
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1 INTRODUCTION

An increasingly connected world makes us dependent on comput-
ing devices that handle a wide range of security- and privacy-critical
operations. On the personal side, we use smartphones and watches
to manage bank transactions and store identity information. On
the industrial and government side, embedded devices monitor
remote system operations and feed data critical to the industrial
processes and national defense. Physical access to these devices
leads to a wide range of security exploits, including impersonation,
proprietary software cloning, and infiltration and exploitation of
industrial and defense infrastructures.

The most common approach to prevent data loss from a system’s
non-volatile memory is to encrypt it using full disk encryption
methods, such as Bit-locker [28] and VeraCrypt [22]. These en-
cryption methods protect user data using a password or PIN so
that even if a device is lost or stolen, the non-volatile memory
remains inaccessible to an attacker. An encrypted disk demands
user authentication whenever there is a reboot, providing adequate
security even if an attacker removes it physically from a system
and attempts to access its content from another machine.

Password-protected disk encryption methods force the attackers
to exploit other types of memories, such as DRAMs. Halderman et
al. show how an attacker gains access to a disk encryption key by
cold booting a system and dumping its main memory [17]. In this
attack, the authors use low temperature (—50°C) to ‘freeze’ the data
in DRAM cells so that even if the memory is out of power for a short
time, it retains its logic states. Once ‘frozen’, an attacker physically
removes and inserts the victim DRAM in another machine to run
forensics on the dumped memory image. From this point, it is
trivial to post-process and extract security- and privacy-critical
information from a system’s main memory. While this attack is
practical for larger devices where DRAM is removable (e.g., laptops),
it poses a few technical challenges for mobile and other embedded
devices. In an embedded device, the memory chips and processors
are soldered on the PCBs, making it difficult to remove them from
a system. FROST [31] overcomes this challenge by allowing device
reset to factory default—preserving DRAM’s content while the
device boots from another media.

To defend devices from cold boot attacks, researchers proposed
numerous methods where sensitive code and data remain encrypted
in on-chip memory; decryption occurs only in the on-chip memo-
ries such as caches [30, 44]. Since SoCs already contain large enough
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on-chip storage to hold keys and cryptographic states, executing
software on these memory requires no additional hardware. For
example, TRESOR uses x86 debug registers to store sensitive AES
states without leaking security-critical information to off-chip mem-
ory [30]. Researchers extend this idea to ARM devices where the
CPU fetches the encrypted software and data to the on-chip mem-
ories before decryption and execution [8, 9, 13, 14, 39, 44]. These
works advocate fully on-chip execution for cryptographic opera-
tions because attacking a processor’s internal memory is expensive
and demands sophisticated attack methods, such as decapsulation.
This paper evaluates the security of on-chip computation schemes,
specifically under the cold boot attack model. We empirically show
that these methods are secure from the traditional cold boot at-
tack [17], but the power domain separation common to modern
SoCs allows us to create a similar effect, which exposes on-chip
secrets to physical attackers.

On-chip memories are mostly SRAMs and built into the proces-
sor die itself (e.g., caches), which alone makes it much more secure
than off-chip memories against physical attackers (e.g., probing
attacks [18, 44]). Previous work shows that SRAM partially re-
tains its state for a few milliseconds in extremely low temperature
(< —110°C) [2], exposing a system to such low-temperature risks
damaging its other components, such as the battery—not to men-
tion the challenge of creating such a low temperature. In addition,
attacking embedded devices requires a physical power disconnect
which is typically much longer than SRAM’s data retention time.!

This paper presents Volt Boot, a method that executes a physi-
cal memory disclosure attack on SRAM-based on-chip memories
by exploiting power supply domain separation in SoCs. Different
physical blocks in an SoC require a specific voltage level to meet
performance demands while reducing power requirements. These
blocks are divided into different domains that need external ac-
tive and passive circuit components, such as a Power Management
Integrated Circuit (PMIC), capacitors, and inductors. The circuit
design of these domains allows fine-grained control of the system’s
total energy budget and performance. From a power management
perspective, these domains are independent and allow full power
down at runtime when not needed by the system. We uncover an
attack vector in such design choice that is exploitable for a cold-
boot-style attack, eliminating the dependency on low temperature
and an SRAM’s intrinsic data retention time.

In summary, this paper makes the following technical contribu-
tions:

e We demonstrate that traditional cold-boot-style attacks, which
leverage low-temperature-induced data retention, are inef-
fective on embedded SRAMs (§3).

e We uncover a new attack vector that exploits power domain
separation of modern SoCs and show that such architectural
design choice can be weaponized for breaking fully-on-chip
cryptography (§5).

o Using three commercially available Cortex-A profile devices,
we demonstrate the attack by retrieving data from caches
(§7.1), CPU registers (§7.2), and iRAMs (§7.3). Provided that

!We define the intrinsic data retention time of an SRAM cell as the time it takes to
discharge (and lose the data) when disconnected from power [35].
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an application runs from internal memory (e.g., cache) undis-
turbed by operating system’s background process, we re-
trieve memory image with 100% accuracy.’

e We survey potential countermeasures and their trade offs

(§8).

2 BACKGROUND

Embedded Static Random-Access Memory (SRAM) serves a variety
of roles in modern computing systems including, storing microar-
chitectural states, buffering address translations, a cache for in-
structions and data, and as the main memory for many lightweight
devices. Their embedded nature naturally protects from physical-
level attacks that rely on interposing the interface between memory
and the computation core (e.g., bus probing and cold boot attacks).
This section discusses the fundamentals of on-chip SRAM, on-chip
power networks, and the rationale behind on-chip cryptography.

2.1 On-Chip SRAM

SRAM is the building block of volatile internal memories, such as
caches, iRAM, registers, TLBs, and BTBs, making them one the
most common memory in modern computing systems. Figure 1
illustrates a typical 6-transistor SRAM cell, which is composed
of two inverters in a positive feedback configuration to hold a
data bit. The cell’s state is accessible through transistors N1 and
N2, and these transistors provide access to the data bit (Q) and
its complement (~Q), respectively. Unless a processor executes a
read/write command, Word Line remains de-asserted with data
stored in the cross-coupled structure formed by inverter () and
inverter (2).

SRAM is energy-efficient, fast, long-life, and self-refreshing; the
only requirement for data retention is sufficient voltage from the
power supply to maintain the positive feedback loop between the
two inverters. The voltage required by an SRAM cell to retain the
state is called its data retention voltage [20]. Data retention voltage
is both process variation and data-dependent but is generally much
lower than the threshold voltage of either inverter (i.e., the ‘turn-
on’ voltage). Provided the voltage of a cell is more than or equal to
its data retention voltage, the cell retains its state. Exploiting this
property, modern processors dynamically scale down the voltage
when the RAM is not actively accessed because it reduces the energy
leakage through parasitic paths.

Unlike other types of memory, direct access (i.e., direct software
read/write) to many types of on-chip SRAM (e.g., instruction cache)
is uncommon. However, most SoCs provide access to these internal
memories through various methods to debug low-level memory
errors; ARM allows RAMINDEX [23] and direct memory access [4]
operations in ARMv8 architecture, while RISC V processors [38]
allow memory-mapped access. For example, a Cortex-A72 processor
provides access to 15 different internal RAMs, including caches,
TLBs, and BTBs through its cp15 co-processor interface.

2The reported accuracy indicates data retention accuracy and not the information
extraction accuracy. Exact information retrieval accuracy varies depending on the data
present in an SRAM.
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Figure 1: Typical 6-transistor SRAM cell.

2.2 Fully On-Chip Computation

Storing security-critical information in a DRAM (which is off-
chip) is unsafe, motivating both industry and academic research
to push for safer off-chip memory management schemes. Since
Intel’s 6" generation processor, all subsequent processors obfus-
cate data in the DDR3 and DDR4 DRAMs using session keys and
pseudo-random numbers [29, 43]. On the academic side, researchers
propose fully SoC-bound computations where sensitive informa-
tion leaves the chip only when encrypted. Modern SoCs contain
a reasonably large volatile memory. In most cases, it is inessen-
tial to encrypt and decrypt every transaction; software can store
intermediate states on on-chip memories in plain text. This idea
inspired numerous on-chip computation methods. Sentry [9] and
Copker [15] uses iRAMs and caches as temporary memory to avoid
exposing secrets in DRAM. Cache-assisted Secure Execution (CaSe)
extends this idea by adding Trust-Zone support to a partially locked
cache. The processor fetches encrypted software from main mem-
ory and stores it in a locked cache as plain text. From this point, the
unencrypted software remains in the cache for the duration of exe-
cution. Similarly, TRESOR [30], PRIME [13], and Security Through
Amnesia [39] use on-chip registers (e.g., debug or multimedia) to
implement cryptographic algorithms on-chip.

These methods essentially emulate a microcontroller’s behavior
in a large-scale application processor and reduce the attack surface
to the borders of the chip itself. Given no unencrypted data is
released off-chip, these methods provide strong security against the
most sophisticated physical memory disclosure attacks, e.g., cold
boot. While these methods induce performance penalties on other
applications by partially blocking hardware resources, our paper
evaluates only their security aspects.

2.3 Power Domain Separation

SoCs contain a large number of circuit blocks with different analog
characteristics. Because of performance and power efficiency con-
straints, these blocks operate under separate voltage domains. An
SoC’s Power Management Unit (PMU) manages voltage required
for specific domains at runtime, depending on each domain’s work-
load [1]. In a complex SoC, dozens of off-chip supply pins are
connected to the power domains to regulate different analog circuit
behavior, such as ground bounce, power-supply noise, and per-pin
current supply. For this paper, we divide the SoCs power supply
domains into three major areas (see Figure 2):
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Figure 2: A simplified block diagram of a SoC’s power do-
mains. The PMIC is an external component that maintains
a specific voltage level at each power domain supply pin.

e Core power domain: the processing elements are in this
domain. For example, the ARM cluster in a multi-core SoC
draws power from the core supply voltage domain. Apart
from computing elements such as CPU extensions and GPUs,
this domain supplies power to the L1 caches and their asso-
ciated control circuitry.

e Memory power domain: this domain supplies power to
the memories and their associated peripherals. Most SoCs
manage main memory, non-volatile memory (e.g., Flash),
and L2/L3 caches with this power domain.

e I/0 power domain: power for the I/O controllers and ex-
ternal peripherals is drawn from this domain.

SoC designers subdivide power domains into smaller logical
blocks that allow for more fine-grain control of the different com-
ponents within an SoC. For example, some processors allow pow-
ering down individual cache components in its L1 memory domain
through software [23]. The domains are separated using power
gating to balance energy consumption and performance of inde-
pendent blocks at startup and runtime.

3 COLD BOOTING ON-CHIP SRAM IS
INEFFECTIVE

DRAMs are typically separate IC packages externally connected
through a memory bus, exposing these memory modules to differ-
ent physical attacks, such as cold boot and bus probing. Given a
system encrypts its code and data while ‘at rest’ in a disk and de-
crypts data while in volatile memories, capturing a live system and
extracting the volatile memories leads to key disclosure, enabling
secret exfiltration.

DRAM holds data as charge in a capacitor. Capacitors continually
leak charge, which is why DRAM cells require periodic refresh
operations to ensure data retention (typically every 64ms). In the
absence of refresh, a DRAM cell’s data retention time depends on
the time it takes for capacitors to leak sufficient charge to change the
digital value interpreted by sensing the voltage across the capacitor.
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Table 1: Errors in d-cache data after a cold boot attack execu-
tion in a BCM2711 SoC. We compute a mean error for each
core at different temperatures. The fractional Hamming dis-
tance between cache content after power cycle and cache’s
startup state is ~ 0.10, indicating no data retention.

Temperature 0°C -5°C —40°C
Recommended Min. SoC’s hard limit
Error 50.14% [ 50.06% | 50.39%

Even without power, a just-refreshed DRAM cell will retain data
for at least 64ms.

Temperature affects DRAM cell discharge rate; lower tempera-
tures increase data retention time. Reducing the temperature of a
memory device keeps the data in the memory for a short period
even if the power is turned off, which is the fundamental idea be-
hind the cold boot attack [17]. Both DRAM and SRAM partially
retain their data across power cycles for a short time when the
temperature is reduced below a certain level [2, 3, 17] due to their
intrinsic capacitance (although DRAM retains for orders of mag-
nitude more time due to its increased capacitance). Information
retrieval accuracy of a cold booted SRAM cell depends on tempera-
ture, manufacturing technology, and power-off time. We discuss
the technical hurdles that prevent a cold boot attack on SRAM as
follows:

e SRAM’s placement: As mentioned before, on-chip SRAM
is tightly coupled with processing cores and are built into
the processor die itself. Such placement of SRAM makes it
inaccessible given the traditional physical attacker threat
model. The embedded nature of SRAMs complicates the cool-
ing process as well because an attacker needs to freeze the
entire device. Cold booting this memory requires extreme
low temperature and risks bricking of the system.

e Short retention time: We cannot launch a cold boot at-

tack on embedded memories by resetting a device through
software because a system easily prevents such attempts by
purging residual memories as part of a core’s power down
sequence [7]. Disconnecting the power from a device is the
only reliable way to prevent the system from executing any
residual memory purging routines.
An abrupt power disconnect from a device while executing
critical security operations ensures target information re-
mains in SRAM. To power cycle an embedded device, we
must manually disconnect its power supply (e.g., the bat-
tery). As the literature suggests, SRAM retains information
for only a few milliseconds—even under extremely cold con-
ditions, which is insufficient to execute a reboot by manually
disconnecting power from a device [31]. In addition, SRAM
is tightly coupled with the compute cores. An abrupt power
disconnect draws energy from all parts of the SoC to the
power-hungry processing elements, which accelerates the
charge drain from SRAM’s intrinsic capacitors. The com-
bined effect of these SRAM-specific variables shortens the
overall data retention time enough to make cold-boot-style
attacks on SRAM infeasible.
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Figure 3: Data cache (L1) snippet (WAY0 = 256 X 512 = 16KB)
of a Cortex-A72 core when we disconnect the power for a
few milliseconds at —40°C. An equal number of 1s and 0s in
the cold-booted cache image indicates that the cache reset
to its power-on state, i.e,, no data remained in the cache.

e Effect of low-temperature: Typically, systems turn off
when the operating temperature crosses a certain threshold
set by the manufacturers. Executing a cold boot attack on
SRAM requires extremely low temperature (< —110°) [2],
which is far beyond the operating limit of most devices. We
reproduced a similar attack as FROST [31] in cache memory
(SRAM, as opposed to the DRAM targeted in the original at-
tack) of a Raspberry Pi 4 (a quad-core cortex-A72 device) [23]
to study cold temperature data retention of its embedded
SRAM. We load bare-metal software to populate both the
d-cache and i-cache of each core and extract the cached
data in a binary image. Then the device undergoes static
cooling in a TestEquity thermal chamber [41] for an hour to
stabilize the core temperature. We power cycle the device
for a few milliseconds and extract the cache (§6) data to
compare it to previously-stored binaries. Table 1 lists the
mean mismatch between post-reboot retrieved cache and
pre-stored binary for each core at different temperatures.
The information retrieval errors indicate almost no data re-
tention even at —40°C. Note SRAMs boot up into random
states where approximately 50% of the bits are 1s. Figure 3
illustrates a snippet of d-cache to provide a clear picture of
the post-power-cycle state of an SRAM.

4 ATTACK MODEL

This paper shows how power domain separation and exposed mem-
ory power supply pins induce artificial SRAM state retention, lead-
ing to a similar effect as a cold boot attack without requiring tem-
perature control. Naturally, our attack model is based on the cold
boot attack [17] where an attacker has physical access to a de-
vice. The most significant modifications to the original cold boot
threat model are the location and type of the memory. Our target
is SRAM embedded within the core of a device, which prevents
direct access to the memory contents without damaging the chip.
This threat model is consistent with the threat model presented in
the FROST [31], Sentry [9], and CaSE [44] systems. These papers
consider a threat model where an attacker captures a device (i.e.,
lost or stolen) that is protected against memory disclosure attacks
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using a lock screen and non-volatile memory encryption. Then the
attacker boots the victim device from a media, e.g., boot ROM or
USB, to dump the uninitialized volatile memory image.

Our threat model extends to headless embedded devices that
collect, store, and transfer sensitive information in an unsupervised
environment. A number of system protection methods exist where
devices are permanently locked from programming or software
updates. The behavior of such devices resembles an Application-
Specific Integrated Circuit (ASIC), and we consider these systems
out of the scope of our threat model.

5 VOLT BOOT

Volt Boot is an attack that exploits an SoC’s power domain sep-
aration to induce cross-power-cycle data retention in embedded
SRAM. In this section, we show circuit design choices made for
power and performance reasons lead to a new cold-boot-style at-
tack, but with increased precision and fewer requirements than
traditional low-temperature-based data retention attacks.

5.1 Inducing Data Retention

SoCs need external pins to supply specific voltage to optimize
performance and efficiently use energy under fluctuating loads.
Usually, a PMIC supplies power to each domain in a particular
order to bring up the board from reset. Figure 4 illustrates a typical
power management IC used in modern SoCs. Generally, LDOs
supply power to the domains where voltage fluctuation is limited,
whereas domains with high load fluctuation (and dynamic voltage
and frequency scaling) use switching regulators to save energy via
heat loss (e.g., BUCK converters on the right side of the PMIC).
When a power domain of an SoC draws a large current under the
demand of software/hardware, the parasitic inductance of the board
and the package drop the voltage at the supply lines; this is called
droop. To counter droop, the supply voltage pins are extended out
of the SoC to connect capacitors so that they ‘absorb’ the current
surge, keeping supply voltage closer to nominal. Regardless of the
type of regulator used in a power domain, the pins connected to
the PMIC require passive components to filter out noise generated
during load fluctuation.

Each power domain is power-gated to allow independent control
at startup and run time. Our observation is that if we externally
maintain a steady voltage to the pin that supplies power to a target
memory domain, it retains data—even while the rest of the system
undergoes a power cycle. We maintain the domain voltage level
from an external voltage probe while disconnecting the main supply
line to the PMIC. That is, Volt Boot artificially creates SRAM data
retention across a power cycle using a voltage probe in a PCB’s test
pad or bare passive component’s lead that is connected to a target
memory domain.

As discussed in Section 3, cold booting is an impractical way of
attacking on-chip SRAMs. Even if it is possible to retain informa-
tion across power cycles, the extracted data is erroneous because
SRAM'’s charge leakage follows a normal distribution, and so some
cells will lose their data even for a short power disconnect [34].
Note that SRAM cells are bistable, which makes it harder to look
for keys using the algorithm proposed in the original cold boot at-
tack [17]. Since our attack involves no other physical variables (e.g.,
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Figure 4: Typical power supply system. The LC combina-
tion supply lines are for switching regulators (right side),
whereas the decoupling capacitor (left side) filters out noise
during fluctuating load driven by LDOs.

temperature), memory discharge rate or manufacturing technology
node is irrelevant and we achieve 100% data recovery.

5.2 Attack Enablers

While power domain separation serves as the basis for our attack,
a combined effect of multiple aspects and attributes of a system
enables Volt Boot. We identify each attack enablers as follows:

5.2.1 Ubiquity of SRAM. SRAM is available in every computing de-
vice ranging from resource-constrained microcontrollers to server-
class processors. We are able to induce artificial SRAM state reten-
tion in any SoC that has separate SRAM and compute core power
domains.

5.2.2 Internal RAMSs Stores Data in Plain-text. As mentioned in
Section 2, cryptography application developers consider on-chip
memories safer compared to external memories. As a result, unlike
external DRAMs, scrambling or encrypting SRAM’s data is uncom-
mon in commodity processors. Thus, access to data residing in
on-chip SRAM guarantees a plain-text version of the information,
even if external memories implement scrambling or encryption.

5.2.3 Domain Specific Exposed Power Supply Pins. As discussed
above, performance, energy efficiency, and die area reduction are
the primary reasons to expose domain-specific voltage pins out of
an SoC; some of these pins are connected to the embedded SRAM.
By construction, data remains error-free in SRAM as long as its
supply voltage remains above its data retention voltage (§2). Note,
this voltage is well below the nominal supply voltage of the power
domain the cells are connoted to. The power domain separation
through power gating methods and dedicated pins exposed from
the SoCs let us shut down the entire system while the small portion
that holds sensitive data ‘alive’.
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Table 2: Evaluated platforms and SoCs.

System on Chip CPU core Board

SRAM Manufacturer

BCM2711
BCM2837

Quad-core Cortex-A72  Raspberry pi 4 Model B [12]  L1I: 48KB, L1D: 32KB, L2: 1MB
Quad-core Cortex-A53  Raspberry pi 3 Model B [11]  L1I: 32KB, L1D: 32KB, L2: 512KB

Broadcom

i.MX535 [32] Cortex-A8

1.MX53 Evaluation board

L1I:32KB, L1D: 32KB,

L2: 256KB, iRAM: 128KB NXP Semiconductor

Disconnect power and reboot with on-chip RAM

Determine domain voltage and

extraction software

Determine target 3

domains and pins

attach a probe to the test
points

Disable all caches
and pause the cores

@ @ —> Post process

Read out the
contents

Figure 5: Attack flow.

5.2.4  No Default RAM Reset Hardware. SRAM stays at an uninitial-
ized state after booting-up because of two main reasons: (I) some
SRAMs are large (>1MB) compared to the other on-chip resources,
and resetting such large memory by iterating over the entire ad-
dress (usually line by line for caches) space reduces boot speed
significantly, and (2) SRAM’s startup state has numerous security
applications, such as PUF [36] and TRNG [19]. Note that clean-
ing and invalidating a cache at the boot phase does not erase the
contents; these operations set the invalid bits to prevent a cache
hit, but the data remains unchanged. The co-processor interface
still allows reading out the cache contents from a proper exception
level (EL3 for ARM devices). Therefore, initializing cache lines us-
ing a software interface is currently the only means to reset the
power-on state of L1 caches, which needs the execution of DC ZVA
instructions for every line [4, 23]. The purpose of this instruction
is to allow initializing a large block of memory in the cache for
a particular data structure without writing zeros in the external
memories. Note cleaning/invalidation instructions apply to both
instruction and data caches, but resetting instructions are exclusive
to d-caches.

6 ATTACK EVALUATION

An SoC’s domain-separated power management architecture allows
us to supply voltage to a target memory through exposed pins and
keep part of the chip active (i.e., retaining state) while the rest of
the system resets. The actual method used to access embedded
SRAM varies depending on the targeted SoC, but devices’ power
supply methods are very similar at a high level. We evaluate Volt
Boot using ARM devices from different vendors, and to explore
the generality of the attack, we choose devices that span a broad
range of applications. For example, Raspberry Pis represents a wide
array of systems, ranging from headless embedded devices common
in IoT applications to systems capable of running a full-fledged
operating system. To expand the targeted memory types, we include
an SoC designed for multimedia applications, because it contains
iRAM. Table 2 lists the specification of the evaluation platforms.

The SoCs in these systems draw power from three different power
management devices, and we observe similar circuit design choices
for the off-chip passive components (see Figure 4).

We provide a stable voltage to each SoC’s target power domain
using a bench power supply with >3A current driving capability.
While attaching a probe at the same voltage level draws only a
few milliamps, an abrupt power disconnect from the compute core
supply line of the PMIC spikes the current momentarily on the
target power domain. Such a current surge drops the voltage be-
low the data retention voltage of SRAM (§2), leading to errors in
the extracted information. Therefore, a power supply capable of
supplying sufficient current is essential when the target memory
domain also supplies power to the CPU core(s).

6.1 Attack Execution Steps

In this section, we discuss how to execute an attack on SoCs (see
Figure 5 for summary).

(1) Identifying target domains and their associated pins:
Once we identify a target device, the first step is to identify
the pins that supply SRAM with power. In most cases, it
is impossible to locate a specific pin on the circuit board,
because SoC chips use advanced packaging, such as BGA.
However, it is not essential to find exact pins in an SoC
package as supply pins are connected to passive components
(e.g., decoupling capacitors) or circuit-board-level test pads,
which tend to be located near the PMIC (§5). The layout of
passive components follows a typical pattern illustrated in
Figure 4. For our evaluation platforms, we list the test points
and target domain’s pin names in Table 3 and present them
in a visual form in Figure 6.

Attaching a voltage probe: We measure the nominal volt-
age at the pin(s) and attach an external power supply probe
at the same voltage level. The power source needs to supply
sufficient current so that the level stays the same when we
turn off the device’s main power; otherwise, we risk losing
the data. As an example, a Raspberry Pi 4 draws current

—
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Table 3: Volt Boot evaluation platforms, test pads, and their nominal voltages.

Boards PCB test pads to probe Nominal voltage Target memories Power domains
Raspberry Pi 3 PP58 1.2V L1D, L1, registers  Core (VDD_CORE)
Raspberry Pi 4 TP15 0.8V L1D, L1, registers  Core (VDD_CORE)
1.MX53 SH13 1.3V iRAM Memory (VDDAL1)
(BC§:1)2C837) Regulator
e uiC (PAM2306)
(BCM2711B0) (MxL7704)

VDD _CORE
(TP15)

(b)

SoC
(LMX535)

PMIC

VDD_CORE
(PP58)

(SH13)

VDDAL

(©

Figure 6: Pictures of our evaluation platforms (a) Raspberry pi 4, (b) Raspberry Pi 3, and (c) i.MX535, showing the test points
we attach our voltage probe to.

G

through the test pad TP15 when we attach an 800mV probe.

The current varies between 400mA to 600mA depending on

software workload. When the SoC’s main supply line (pow-

ered through a USB C) is disconnected abruptly, the cores
draw power from the attached probe. The probe maintains
the voltage level even if the cores demand a momentary
current surge. The current consumption drops to 8mA after

a few microseconds, and the memory domain stays in this

retention state indefinitely.

Power cycling and booting the system: Once the exter-

nal probe is in place, we disconnect the device from the main

power source while our voltage probe keeps the target SRAM
active.

A system’s boot-up method after power disconnect varies.

Some systems allow booting up from alternative media only

if the user data from the disk is erased, whereas some devices

boot internally without needing any external boot media.

We emulate this behavior by booting up the Raspberry Pis

from another media through a USB mass storage device. We

write a post-reboot data extraction program that performs
the following tasks:

(A) Reduce contamination on the SRAM’s retained data during
boot-up by avoiding storing data to it (either explicitly or
implicitly).

(B) Exfiltrate data from the SRAM to other memory (e.g., Flash,
DRAM, or a debugger) for post-processing.

The cache extraction software executes CP15 instructions
and reads out the data register interface of the caches to
general-purpose CPU registers. Cache access requires read-
/write to system registers. For processors with out-of-order

~

o

6.2

=

execution capability, we must use appropriate data and in-
struction synchronization barriers. For example, Cortex-A72
processors uses SYS #0, c15, c4, #0@, <xt>instruction to
execute RAMINDEX operation (cache access request to CP15
co-processor). Data and instruction synchronization barrier
instructions DSB SY and ISB, respectively, must follow this
instruction before reading the cache data output register
interface. A set of general load/store instructions moves the
data from the general-purpose CPU registers to DRAM for
further processing.

We directly dump the iRAM’s through the debug interface,
because 1.MX535 requires no external firmware support for
booting up. Thus, we connect a JTAG probe and directly read
out the processor’s (Cortex-A8) iRAM contents.
Analysing the memory contents: Depending on the tar-
get SRAM and the objective, an attacker needs to adapt post-
processing. Since Volt Boot reads out the memory without
any error, the noise source in a successful attack is the dy-
namic behavior of software and its effects on the data stored
in embedded SRAM. For example, error-free key extraction
from a cache memory depends on the processing core’s work-
load and other background processes.

How Much Memory is Accessible to an
Attacker?

At startup, the CPU uses some types of embedded SRAM before
even an attacker has access to those memories. What percentage
of memory is available after SoC boot-up depends on the target
memory type of an SoC. To find the accessible SRAM, we execute
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bare-metal software that populates a target memory with prede-
fined patterns. The bare-metal setup allows us to calculate the
effect of the CPU’s boot phase on internal memories, avoiding dy-
namic behavior, such as cache eviction. Once the software loads
the data/instruction in the target memory, we execute the steps
discussed above (Section 6.1).

Our experiments on the L1 caches of the BCM2711 and BCM2837
indicate no clobbering from the initial boot phase. This result aligns
with the fact that the L1 cache in these SoCs is software-enabled.
Therefore, when an SoC releases the control to external software,
an attacker simply never activates the cache. That is, an attacker has
access to the full image of the L1 caches. Note that, these Broadcom
devices contain a built-in video core that shares the L2 cache with
ARM CPU cores. At startup, video-core initiates system initializa-
tion using pre-compiled binaries that clobber L2 cache contents,
preventing any post-reboot data access.

The 1.MX535 has similar behavior for caches, but boot ROM
uses part of the iRAM as scratchpad memory before initializing
the DRAM controllers. That is, the CPU resets part of iRAM before
allowing any debug connection or software execution. Such a boot
method is standard among Cortex-M devices; they usually clobber
2KB SRAM (main memory) at the boot phase [21, 27]. We exper-
imentally show that approximately 95% of an i.MX535’s iRAM is
available to an attacker.?

7 ATTACK EXECUTION IN DIFFERENT
MEMORIES

A successful cold boot attack depends on many variables, including
temperature and an SRAM’s intrinsic data retention time (mostly
determined by the manufacturing technology). An attacker must
turn off the device abruptly to prevent memory corruption or any
defensive wiping. The next step is to reduce the temperature of the
device; the lower the temperature, the more accurate the extracted
information (given some fixed amount of time without power).
Then, the victim device needs to boot. The most common way to
execute an abrupt power-off in a commercial device is to remove
the battery or power connection from the device. These operations
require more than a few hundred milliseconds, far too long for
SRAM data retention [2].

Volt Boot is a non-invasive memory disclosure attack that es-
chews temperature for voltage-induced cross-power-cycle data
retention for SRAM. The ultimate result of such data retention
resembles a cold-boot-style attack with higher accuracy—without
exposing a device to unrealistic low temperatures. Volt Boot exploits
power domain separation in modern SoCs, eliminating variables
like data retention time and temperature. We execute three example
attacks using the devices listed in Table 2. Our proof-of-concept
attacks empirically demonstrate the vulnerability of computation
methods that store secrets as plaintext in caches, registers, and
iRAMs.

7.1 Attacking Caches

Large caches are common in SoCs, and numerous on-chip compu-
tation methods, for example, CaSE [44], exploit a portion of such

3 A viable defense could hide secrets in the 5% of memory overwritten during the initial
boot phase, although we did not verify if this entire portion of SRAM gets overwritten.
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Figure 7: Snapshots of i-cache after attacking bare-metal
software in (a) BCM2711 and (b) BCM2837 SoCs. Uninitial-
ized cache cells power on into random sate (see Figure 3),
but when we execute Volt Boot attack, instructions stay in
the i-cache across power cycles.

(b)

caches to use it as the primary software execution memory (instead
of external DRAM). We assess the security of such schemes under
the threat model described in Section 4.

7.1.1  Attacking Caches with Bare-Metal Software. In this scenario,
we study how Volt Boot attacks a device that runs bare-metal soft-
ware, and emulate common embedded systems that are designed
for specialized applications, such as monitoring and collecting data.
We write a bare-metal program that enables the caches, then exe-
cutes NOP instructions in all four cores. This allows us to quantify
precisely how much of the software Volt Boot extracts. To tightly
control the execution environment, we write the software in assem-
bly (i.e., aarch64).

We execute the attack steps (Section 6.1) on Raspberry Pis and
compare the cache content to the ground truth machine code.
Figure 7 provides a visual representation of the the cached content
after we execute the attack (compare it to Figure 3). As expected,
the accuracy of data retention in the caches is 100% in all four cores
of both devices.

7.1.2  Attacking Caches with an OS. We show how Volt Boot leaks
data from a user application running on a system for general-
purpose operations—the Linux kernel. We write an application
that stores a specific pattern (0xAA) in a large data structure and
reads it back. While executing, we carry out the attack steps from
Section 6.1 and plot the post-attack snapshots of the respective
d-cache in Figure 8. The d-cache contains the expected pattern (i.e.,
0xAA). To find out whether the instructions are also in the cache, we
grep the i-cache contents and confirm that we find all the instruc-
tions for our software (compared with the ground truth machine
code) within consecutive address spaces.

To quantify the effect of a cache’s dynamic behavior on a Linux-
based system, we write a microbenchmark with variable array
size; the benchmark loads the array from the Flash to DRAM (and
d-cache). We run the benchmark in a standard Raspberry Pi OS
running on a Raspberry Pi 4 [12]. This SoC has a 32KB two-way

4BCM2837 (Cortex-A53) i-cache stores instructions and ECC in each cache line. The
order of the bits is undocumented in the technical reference manual [4]. We extract the
cached content before and after the attack, which provides an error-free comparison.
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Table 4: Extracted data from d-cache of a BCM2711 SoC using Volt Boot attack. The size of the d-cache in this SoC is 32KB,

which is divided into two ways, W0 and W 1.

4KB [ 8KB 16KB 32KB
Core0 Corel Core2 Core3 Core0 Corel Core2 Core3 Core0 Corel Core2 Core3 Core0 Corel Core2 Core3
wo 373.0 338.7 354.7 363.0 591.0 580.7 564.7 581.0 1177.3 1155.0 1179.7 1114.3 1956.7 19803 1984.0 1878.0
w1 309.0 341.0 340.7 318.0 633.0 659.7 656.7 656.7 1067.3 1097.3 1084.7 1139.0 1990.7 19707 1977.3 18153
wouwil 512.0 512.0 512.0 512.0 1024.0  1023.7  1024.0 1024.0 2048.0 2048.0  2045.0 2048.0 37473 3753.0 3759.3 3509.0
% data extracted | 100.00% 100.00% 100.00% 100.00% 100.00% 99.97% 100.00% 100.00% 100.00% 100.00% 99.85% 100.00% 91.49% 91.63% 91.78% 85.67%

(a) d-cache

(b) i-cache

Figure 8: Snapshots of the caches after executing Volt Boot
on a system running a general application. We generate the
cache images from one WAY of each type of cache.

set-associative data cache. We vary the number of 8-byte elements
in the array by increasing the size of the array in each set of exper-
iments. The size of the array varies from 12.5% (4KB) of the cache
size to full-cache size (32KB); by extension, the number of elements
in the array varies from 512 to 2048. We repeat Volt Boot attack
on each array size three times and calculate an average number of
elements retrieved for each array size.> We launch one benchmark
process per core, which allows us to analyze how L1 cache’s (per
core) dynamic behavior affects Volt Boot’s data retrieval accuracy.®
In each experiment, our post-processing script compares the array
elements with the retrieved cache image of each core. Note that,
other processes (and the kernel) evict cache lines, therefore, an
element of the array can be in both ways of the cache in a modified
state. We consider an element of the array present in the d-cache
only when the entire 8-byte array element is present in the cache.
Table 4 lists the results of the L1 data cache data extraction ex-
periment. A 4KB array contains 512 array elements and Volt Boot
retrieves all the elements. Volt Boot retrieves approximately 90%
of the array elements when the array size is close to the cache
size. That is, when the data size approaches the total cache size,
5That is, a total of 12 experiments for 4 different array sizes.

© At the time of the attack, the victim system concurrently runs 4 processes in the 4
different cores of the Cortex-A72 CPU.

information retrieval accuracy decreases. The kernel’s background
processes introduce errors in the data extraction by evicting cache
lines when the size of a data structure is comparable to the cache
size. Note that in the case of on-chip crypto, which uses cache
locking (e.g., CaSE [44]), Volt Boot retrieves the entire binary of
plain-text software since neither the kernel nor other processes can
evict secret-holding cache lines.

7.2 Attacking CPU Registers

Modern SOCs contain different types of CPU registers that are
not part of a typical boot sequence, for example, ARM cores use
vector registers <v@...v31> to process SIMD and floating-point
instructions. These registers are relatively large (128-bit) and byte-
addressable, making them suitable for storing security-sensitive
states (e.g., key schedules) of cryptographic algorithms, such as AES.
Given our threat model, we investigate whether these registers are
vulnerable to Volt Boot.

We write a bare-metal program in aarch64 assembly that fills
out the vector registers with distinguishable patterns, e.g., 0xFF and
0xAA. Our post-attack analysis on BCM2711 and BCM2837 shows
that these vector registers fully retain their states when we execute
Volt Boot attack. Therefore, any on-chip cryptographic program
that hides secrets in these registers is vulnerable to Volt Boot.

7.3 Attacking iRAMs

iRAMs (also known as OCRAM) are on-chip memories that an SoC
uses as temporary storage for different applications, such as boot
firmware and multimedia streaming. We study the vulnerability
of these memories to Volt Boot attack using a multimedia SoC, the
1.MX535 [32], which contains 128KB of iRAM. This memory is
in the L1 memory power domain, and it draws power from the
VDDAL1 pin of the SoC. Unlike the BCM2711 and the BCM2837, the
1.MX535’s ARM core itself draws power through a different pin,
VCCGP. The 1.MX535 boots from internal ROM, and attacking this
SoC does not require any external boot media (e.g., Flash). That is,
this device essentially behaves as a microcontroller at startup. We
attach a JTAG reader to read/write to the iRAM directly and store
four copies of a 512 x 512 (128KB) bitmap image to quantify the
accuracy of data extraction through Volt Boot attack.

Figure 9 illustrates the images that we extract from an iRAM
using Volt Boot. As mentioned before (Section 6.2), full iRAM is
not retrievable because internal boot firmware partially clobbers it
before releasing the core to external software. The overall error in
the iRAM’s extracted information is 2.7%. To locate the exact error
source, we calculate the Hamming distance between the image bi-
nary and iRAM extracted binary at a 512-bit granularity (Figure 10).
The location of the error is clustered around the beginning and end
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(b)
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(d

Figure 9: Visual representation of iRAM’s data extraction for address (a) 0xF8000000 to 0xF8007FFF (b) 0xF8008000 to 0xF800FFFF

(c) 0xF8010000 to 0xF8017FFF (d) 0xF8018000 to 0xF8020000.

of the iRAM. The largest source of error address range is between
0x0xF800083C to 0xF80018CC. The device resets this part of the memory,
and the error source is consistent with the other i.MX535 devices.

8 COUNTERMEASURES

To assess potential countermeasures, we break down the Volt Boot
attack into two broad phases. To execute a successful Volt Boot
attack on an SoC, an attacker must be able to:

(1) induce SRAM data retention across power cycles.
(2) access the unmodified SRAM contents after the system re-
boots.

To defend against the attack, one can eliminate any one of these
essential steps. This section provides insight into some potential
countermeasures to Volt Boot attack.

e Eliminating power domain separation: The decision to
separate circuit blocks into power domains involves numer-
ous levels of hardware design stack, ranging from device man-
ufacturing to architecture. For example, voltage domain sep-
aration allows an SoC’s power management unit to change a
block’s behavior when computational demand rises dynami-
cally and to turn it off entirely when not needed. The exposed
pins of these domains filter out the noise and maintain stable
internal voltage. Eliminating power domain separation is not
a practical countermeasure due to performance, efficiency,
and implementation concerns.

e Purging residual memory: A straightforward way to avoid
on-chip data retention in the caches and other on-chip RAMs
is to erase the memory as part of the processor’s power-down
sequence. Such a software/hardware-driven approach is not
a practical solution to defend against Volt Boot because an
abrupt power disconnect from a live device stops all opera-
tions immediately.

o Resetting SRAMs at startup: Even if an attacker success-
fully retains the memory states after a power cycle, it be-
comes useless if there is no feasible method to extract the
retained information after a reboot. Resetting the memory
using hardware such as MBIST or other hardware-driven
methods prevent this attack.

Our experiments on numerous devices, ranging from micro-
controllers to application processors, suggest that hardware
memory reset at boot-phase is uncommon. Most devices boot
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Figure 10: Hamming distance between image binary and
post-attack binary.

into an undefined SRAM state and remain that way until
software writes to memory. armv8.A suggests that the L2
cache can be reset by pulling nL2RST pin low for 16 cycles,
but this is not applicable for L1 caches.

When it comes to caches, the CPU does not benefit from
resetting the data and instruction RAMs because the cache
operation is dependent on the status of tag RAMs (e.g., L1D-
tag and L1I-tag), not the data RAMs (e.g., L1D-data and L1I-
Data). Therefore, there is no way to reset the data RAMs
in the cache other than executing the zeroization operation
provided by the ISA, which is a software method. Instead
of attempting to reset the memory by writing zero to it, we
can adopt a simpler hardware-based solution that internally
toggles the power of SRAMs at reset. While effective, this
solution requires hardware modification, and therefore, is
not applicable to already manufactured SoCs.

e Trust-Zone support: ARM Trust-zones(TZ) is a hardware-
backed memory isolation technique available in most Cortex-
A profile processors.” Hardware checks every memory access
to assess the validity of the transaction. Cortex-A profile pro-
cessor stores a security bit (NS) for every line of its cache.

7 ARM introduced Trust-Zone in Cortex-M profile devices recently.
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Enforcing TZ-support prevents unauthorized access (from
non-secure state) to memory locations that are marked se-
cure. An attempt to access a secure line from a non-secure
state triggers a hardware exception. The secure data remains
inaccessible to an attacker across power cycles when TZ
is enforced because the only way to read secure memory
content is to change the security attribute of the memory
location; such reset erases the memory content.

e Mandated authenticated boot: Volt Boot needs to boot
the system with an exploitable system image. Signing the
system with OEM’s signature and burning the hash of the
image in the fuses prevents an attacker from booting a de-
vice from another media. Note that all devices do not have
mandated authenticated boot functionality as it complicates
post-deployment firmware updates. In addition, some pro-
cessors boot from internal boot ROM using its internal RAM
as a scratchpad and allow direct access to on-chip memory
because, of the assumption that on-chip SRAM does not store
any information across power cycles.

9 RELATED WORK

The trend towards ubiquitous computing results in an increased
attack surface of devices where attackers have physical access. As
society increases its dependence on these exposed devices, device
security in the physical access threat model grows in importance
and criticality. Realizing this, researchers have addressed begun to
focus on physical memory disclosure attacks and defenses.

9.1 Cold Boot Attacks

Cold booting is a well-known attack that affects virtually any device
with volatile memory with temperature-dependent data retention.
BootFacker [7] proposes a reboot attack where an attacker gets
physical access to a device and force reboots it to a malicious ker-
nel. The authors construct a proof-of-concept attack where the
system recovers its state exploiting the data retention property of
DRAM cells. Since the reboot method is software controlled (i.e.,
warm reboot), this attack is easy to mitigate using an OS-level resid-
ual memory purger [10]. Halderman et al. [17] proposes a more
comprehensive attack on DRAM that exploits DRAM’s ability to
retain data when the temperature is reduced well below freezing. As
DRAM'’s discharge rate is lower at cold temperature compared to
the typical operating temperature, it allows an attacker to remove
the DRAM from a victim machine and plug it in another machine.
The attack reconstructs security-critical information such as disk
encryption keys from a cold-boot-extracted memory image. Even
though DRAM’s discharge rate reduces significantly at low temper-
ature, some bits do flip states during migration between the victim’s
and attacker’s machine. These bit flips introduce errors in the ex-
tracted information. Consequently, the attacker needs to perform
a time-consuming search to reconstruct the correct keys from the
recovered content; the search space grows exponentially with the
number of flipped bits. In follow-up work, researchers reproduce
the cold boot attacks with more modern DRAM technology [5, 24].

DRAM in mobile and IoT devices is usually soldered on the
circuit board, which impedes the conventional plug-and-play cold
boot attack. FROST [31] shows how an attacker erases an android’s
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non-volatile memory by triggering a factory reset (without erasing
the DRAM). Once the user data is erased from a device, an attacker
loads a lightweight kernel to dump and analyze the victim’s cell
phone contents.

Modern systems make it challenging for an attacker to extract
sensitive information from post-reboot DRAM memory dump using
a low-temperature effect. The defense mechanisms to DRAM cold
boot attacks can be broadly classified into two sets. One set of
methods scrambles or encrypts the outgoing data. For example,
DDR4 uses session keys to scramble data in a DRAM to prevent
cold boot attack [43]. Another set of methods advocates overwriting
memory contents using built-in hardware every time a DRAM chip
powers on [33, 37]. Researchers have evaded memory scrambling
in more recent cold boot attacks [43] and self-resetting DRAM has
not been implemented or deployed by commercial DRAM vendors.

9.2 SRAM Data Retention Attacks

SRAMS’ ubiquity drives a large body of research that studies the
implication of data retention properties across power cycles. One
set of studies investigates how cooling affects the SRAM’s data
retention and shows how this is a potential exploit in cloning phys-
ical unclonable functions and leaking secrets [2, 3, 6, 16, 40]. These
studies report that SRAM’s data retention can be as high as ~80%
when removed from power for 20ms at —110°C, but post-reboot
state retention becomes 0% when the temperature is lowered to
—40°C [2]. Another set of studies exploits SRAM’s data imprinting
effect for applications where a cell holds the same logic state for
a long period of time [6, 25, 26, 42]. The fundamental idea behind
these attacks is a natural phenomenon known as circuit aging. As
software uses an SRAM cell, the circuit goes through analog-domain
changes, revealing the logic state that was stored in the cell through
its power-on state. These attacks involve a significant investment
of time and other technical efforts to achieve reasonable data re-
trieval accuracy and require data to remain in the same SRAM cells
with the same value for over a decade to have even modest data
recovery. Note that, unlike DRAMs, SRAMs are bistable; therefore,
an attacker needs to consider both the logic states for correcting
any error in a piece of retrieved secret information.

10 CONCLUSION

The last two decades of hardware security research has seen a
rampant increase in proof-of-concept and real-world attacks tar-
geting off-chip memories designs. Recent efforts to mitigate these
attack surfaces primarily turn to on-chip computation—i.e., Cache
as RAM[44]—as their deeply embedded nature renders all previous
classes of attacks (e.g., cold boot[17]) obsolete. However, these sys-
tems’ reliance on power domain separation enables a new class of
attacks: Volt Boot.

In this paper, we show that current on-chip SRAM is indeed
resilient against conventional temperature "freezing"-based attacks
(e.g., [2]). However, we show the effectiveness of a voltage-based
attack that snapshots SRAM, without exposing an SoC to low tem-
perature, effectively enabling the indefinite retention of SRAM data,
while software changes. Compared to previous-generation cold boot
attacks against standalone SRAM, Volt Boot achieves error-free data
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exfiltration on devices spanning three distinct microarchitectures—
defeating the paradigm of on-chip computation as a viable defense
against secret extraction.
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